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Overview and Conclusions 
Our exploration of the feasibility of in-space production of storable propellants from resources 
available on asteroids, and also on Mars and the Moon, has considered the process of sample 
acquisition; the energy requirements for heating and volatile release; the thermodynamic behavior 
of gas release from minerals and organic polymers containing hydrogen, oxygen, carbon, sulfur, 
and nitrogen; purification of the released water and carbon dioxide; the storage and transportation 
of these materials in the condensed state; synthesis of fuels including methanol and dimethyl ether 
(DME); and the co-production, concentration, stability, and storage of the complementary oxidizer 
high-test hydrogen peroxide (HTP).  We call attention to the ability of the storable 
propellant/oxidizer combination of DME and HTP to carry out deep-space missions and to perform 
retrieval and relocation of any and all space-derived resources, such as retrieving asteroidal metal 
to high Earth orbit.  This study’s analyses are based on returning resources to a 
storage/processing/dispensing facility in a Highly Eccentric Earth Orbit (HEEO) with a perigee 
above geosynchronous orbit and an apogee approach or beyond the Moon’s orbit. 
The methane/LOX option, notable for good engine performance, has not been included in this 
study because our scope includes only fully storable propellants.  
This work in Phase I has led to a number of conclusions.  These are: 
1.  Thermodynamic theory shows that extraction of water and carbon dioxide from carbonaceous 
(C-type) near-Earth asteroids by means of direct solar heating is feasible and efficient.  This is in 
agreement with experiments carried out by Joel Sercel in an independent NIAC Phase I project, 
using both CM type meteorite material and a C-type asteroid simulant that we have developed at 
DSI and the University of Central Florida under an SBIR grant running concurrently with this (and 
his) NIAC grant. 
2. The same theory also predicts that attempts at full extraction of volatiles from a C asteroid will 
require calciner temperatures of at least 700 K, at which temperature not only does the native 
organic polymer in the C asteroid material react with magnetite (Fe3O4) to generate carbon dioxide 
and water vapor, but also these gases react with coexisting sulfide and sulfate minerals to release 
copious amounts of sulfur dioxide.  This prediction has also been qualitatively verified by Joel 
Sercel’s work on meteorite and DSI simulant materials.  At these temperatures, release of H, C, O, 
N, and S produces gases amounting to about 40% of the total mass of the asteroidal material. 
3. The principal sulfur gas released, sulfur dioxide, is a source of some concern for several reasons.  
It is a toxic and offensively odorous gas that must be removed from water intended for life-support 
or hydroponic use.  It also spontaneously generates elemental sulfur and sulfuric acid, highly 
undesirable materials that can corrode or clog water-handling systems such as Solar Thermal 
Propulsion engines.  Further, some of these sulfur compounds can poison the catalyst beds used in 
several critical processing steps in manufacture of propellants and metal products. 



Deep Space Industries Inc.  In-Space Production 
NNX15AL85G  of Storable Propellants 
 
 

 
2 

4. Sulfur impurities may be removed on the asteroid from freshly generated impure water to make 
it safe and suitable for these uses.  The application of Reverse Osmosis (RO) or other relevant 
technology provides the requisite purification in a simple and safe manner, using equipment of 
high TRL.  The purified water is then suitable for use in everything from STP thrusters to chemical 
reagents to chemical propellant manufacture to life-support fluids. 
(4alt.) Alternatively, SO2 release may be minimized by using lower calcining temperatures, which 
also severely limits CO2 release.  This option suggests retrieval of only water to HEO on the first 
mission, with production of only H/O propellants.  Such a mission would also provide an 
opportunity for retrieval of unprocessed asteroid material to HEEO for use in process-development 
experiments there, relegating CO2 and SO2 production to HEEO. 
5.  The “rejected” sulfur compounds from water purification are a valuable feedstock for 
manufacture of industrial grade sulfuric acid, a critically important and useful chemical reagent 
for mineral and metallurgical use, and do not represent waste.  We have not yet studied the 
handling and processing of this sulfur-rich material since it is not the main focus of this project; 
for present purposes we envision sequestration and storage of sulfuric acid against future demands.  
In scenario 4, the sulfuric acid would be made and stored on the asteroid; in scenario 4alt this 
would take place on the HEEO facility.  
6.  Manufacture of HTP and DME (or methanol) requires only CO2 and H2O as raw materials, in 
the proportion of 2 CO2 molecules per 9 molecules of H2O for making DME/HTP (1:5 for 
methanol/HTP). Several candidate processes are available for manufacture of each product, all 
requiring the presence of hydrogen and oxygen gas. Thus electrolysis of water is an essential step 
in storable propellant manufacture.  This process is carried out routinely as part of the life support 
(oxygen recovery) system of the International Space Station, and has a very high TRL, with years 
of flight experience. 
7.  CO2 and H2O can be co-condensed as a methane clathrate hydrate, CO2.6.75H2O, close in 
composition to the desired ratio for coproduction of HTP and DME, with some excess water.  
Hydrate formation appears to be a very useful way of storing and transporting its component gases 
for in-space industrial use, and may be a patentable process.  If clathrate formation proves too 
challenging in our Phase II laboratory tests, transport as solid CO2 and H2O is feasible. 
8.  Production of methanol can be effected by passing a mixture of hydrogen and carbon oxides 
(either CO or CO2) through any of several types of industrially validated catalyst beds.  DME can 
be produced efficiently either by dehydration of methanol (one common practice is dehydration of 
methanol by reaction with sulfuric acid) or using a two-layer catalyst bed with the methanol 
product being immediately passed at higher pressure through a gamma-alumina catalyst layer to 
manufacture DME.  Either methanol or DME is a credible propellant. 
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9.  Most terrestrial manufacturing schemes for HTP use organic catalysts of questionable utility in 
space; however, one proposed (and partially patented) scheme is simply an adaptation of 
conventional H/O fuel cell technology optimized for HTP production rather than electrical energy 
generation.  Further development of this scheme and validation of various candidate electrode 
materials looks very promising for efficiency, robustness, and simplicity. 
10. The essential on-asteroid processing steps and flow diagrams (heating, condensation, reverse 
osmosis, and freezing for transport) seem readily manageable, whereas the ensuing processing 
steps for co-production of HTP and DME are a mixture of high-TRL and low-TRL steps of a 
higher degree of complexity.  It would seem prudent to carry out these steps in near-Earth space 
where human-tended or tele-operated equipment would carry out the synthesis.   
11. HTP production in this scheme is remarkably free of sources of contaminants that could 
catalytically destroy HTP during storage.  We have developed a quantitative model of the kinetics 
of HTP decomposition that shows extremely low decomposition rates (order of 10-4 to 10-5 %/year) 
when stored in appropriate containers near or below the freezing point with ppm concentrations of 
sodium or potassium stannate as stabilizer. 
12. The insensitivity of propellant performance (for example, the Isp for DME/HTP fueling) on the 
water content of HTP makes extreme purification of the HTP to <5% H2O unnecessary. 
13. It appears that the best system architecture would involve water production and purification at 
the asteroid, use of STP with water as the working fluid for the retrieval of large masses of 
asteroidal material to Earth orbit, and processing of retrieved water and carbon dioxide in Earth 
orbit to manufacture storable (or cryogenic) propellants for use in outbound missions to asteroids 
or any other destination. 
14.  C asteroid processing schemes (but not sample acquisition schemes) would be applicable to 
any source of CO2 and H2O, including lunar polar volatiles and Martian volatiles. 
15. Whether future missions will employ deep cryogens (LH2/LOX), mild cryogens 
(methane/LOX), storables, or simply water for STP or NTP use, retrieval and purification of 
asteroidal volatiles (water and carbon dioxide) is a key technology. 
16.  Water-based STP, with its low power (governed by the solar flux), has sufficient Isp (at least 
200 s) to serve well for launching a water payload from an asteroid and directing it to Earth  
intercept, but lacks the acceleration to be effective in capturing into Earth orbit at approach speeds 
too high for lunar capture.  Chemical propulsion, with its high thrust level, is better suited for both 
Earth capture (via inverse Oberth effect at low altitude) and Earth departure to deep-space targets.  
Initially, carrying some of the propellant derived from earlier missions to assist in Earth capture 
may be desirable. 
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16alt. In the same way, Earth capture via aerobraking with or without a lunar swingby is an 
extremely promising way to improve overall performance (mass payback ratio) of the system.  
Aerobrake manufacture and use are not within the scope of this study.   
17.  Looking forward, manufacture of propellants at the asteroid target will require significant 
experience in Earth orbit to validate and fully automate the processes, suggesting that it will be 
significantly farther downstream and that current research should concentrate on improving the 
low-TRL parts of the processing scheme in Earth orbit.   
18. Development of the technologies for in-space propellant manufacture can easily be approached 
as a stepwise, evolutionary sequence.   The logical sequence appears at present to be: 
a) Extraction of water from an NEA and return to Earth orbit via Solar Thermal Propulsion using 

part of the water as the STP working fluid.  All water processing into marketable products 
would occur in HEEO.  Products available in Earth orbit would include water, hydrogen, 
oxygen, and hydrogen peroxide, addressing markets such as radiation shielding (water), 
life support (water and O2), cryogenic propellants (LOX/LH2), and monopropellants for 
station-keeping and microsatellite propulsion (H2O2).  Critical technologies include water 
extraction and purification, development of a water-based STP system, adaptation of ISS 
water-electrolysis technology, and production of high-test peroxide (>95% purity H2O2; 
HTP).  If deep-cryogen propellants are desired, then liquefaction of oxygen and hydrogen 
are required. 

b) Extraction of carbon dioxide from the same NEA and return of water and CO2 via water-based 
STP to HEEO, quite possibly transporting these materials as a solid clathrate hydrate.   
With water and carbon dioxide available as feedstocks, carbon-based storable propellants 
such as dimethyl ether (DME) or methanol (CH3OH) can be co-produced with hydrogen 
peroxide.  Results from Phase I indicate that the first missions actually may be able start 
with this phase – combined water and CO2 harvesting – and a critical part of the Phase II 
research is verifying that this leap is feasible.   

c) Using the same starting materials, methane/LOX production in HEEO becomes possible.  This 
is an attractive intermediate between deep cryogens (LH2) and fully storable propellants 
(HTP/DME) in terms of both technical difficulty and performance. 

19. In the longer run, once experience in storable propellant manufacture is in hand, it would be 
desirable to transfer that process to the surface of the asteroid where mining and extraction are 
taking place. This would open up a variety of new mission opportunities to, for example, Belt 
asteroids and the outer planets. 
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Introduction 
The idea of using asteroidal materials as an economic resource can be traced back to the writings 
of Konstantin Tsiolkovskii in 1903 and Robert Goddard in 1908, although without any details or 
examples of such processes and uses.  The extraction of materials, notably water, from 
carbonaceous near-Earth asteroids (NEAs) for propellant manufacture was explored in the 1990s1,2 
in sufficient detail to generate substantial interest in the process.  In parallel, numerous studies of 
the orbital and thermal evolution of Jupiter family (short-period) comets established the principle 
that many bodies in the NEA population may be ice-rich dormant comets with dirty-ice cores, 
shielded by a “lag deposit” of fluffy, opaque, poorly conductive carbonaceous dust with a thickness 
of one to several meters, left behind by evaporation of near-surface ices during multiple perihelion 
passages.  The literature on this subject has been ably reviewed by Weissman, et al.3 Several 
studies by Eugene Shoemaker, Richard Binzel, and other asteroid experts have proposed that 40 
to 60% of the NEAs may be former short-period comets, each of which in turn may contain 60 to 
80% readily extracted volatiles.  Such extinct or dormant comets would be extremely dark, 
spectrally similar to carbonaceous chondrite meteorites, due to the lag deposit of carbonaceous 
dust coating their surfaces.  Thus an “asteroidal” target may well be a rich source of cometary 
volatiles. 
 
1. Available Feedstock on C-cadre Asteroids 
There are several classes of very dark asteroids in the near-Earth population, collectively referred 
to as the C-cadre asteroids.  These include the B, C, D, F, G, P and T spectral types.  All are very 
dark, with albedos (reflectivities) in the range 0.10 down to 0.023), and some show an absorption 
feature in the 3 μm spectral region due to water.  Of these asteroid types, only one is well-
represented by meteorite samples: the spectra of the C asteroids correspond closely to those of the 
CI and CM carbonaceous chondrite meteorites.  The unique Tagish Lake meteorite may also be a 
spectral match for the D asteroids, many of which have orbits indistinguishable from those of 
short-period Jupiter-family comets.  The Almahatta Sitta meteorite, which fell in the Sudan in 
2008, was observed astronomically before impact, and indeed the impact was predicted based on 
a short run of tracking data on it in its short career as a known NEA, cataloged as 2008 TC3.  The 
spectrum measured during its approach to impact was found to resemble the F-type asteroids.  Most 
of the material recovered from this fall belongs to the very dark ureilite achondrite family of 
meteorites, which are quite dry but contain up to 3% by mass carbon. 
Most dark asteroids belong to the C type, which are notable for a highly disequilibrium low-
temperature mixture of minerals of very diverse formation conditions.  This asteroid spectral type 
corresponds to the CI and CM meteorite classes, which contain 5 to over 20% by weight 
chemically bound water and 3 to 6% black polymeric organic matter.  They also contain about 6% 
sulfur, including sulfides, sulfates, elemental sulfur and organic sulfur, plus abundant magnetite 
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containing extractable oxygen totaling about 12% of the meteorite mass.  The CI chondrites 
contain a grand total of about 40% by weight extractable H-C-O-N-S volatiles. 
Astronomical observations4 of comet 67P/Churyumov-Gerasimenko made several years before 
Rosetta’s arrival found the albedo of its nucleus to be 0.04 ± 0.01.  The recent Rosetta4 mission 
observations have found a global average albedo of 0.06 ± 0.01 just before perihelion passage.  
This is of course not compatible with fresh ices, but is entirely compatible with the surface being 
dominated by a lag deposit of C-type material.   
The B, G and T asteroid spectral types appear to be thermally altered C material, but unfortunately 
are without convincing representation in our meteorite collections.  The T and D asteroids, 
however, are known to be common among the NEAs whose orbits are most similar to those of 
short-period comets.  The P asteroids are very common at the outer edge of the asteroid belt, but 
none are known in the NEA swarm. 
In addition to these unambiguously dark objects, there are many asteroids that are assigned to the 
X type.  These are objects for which there are no albedo data, but the spectrum is known to be 
quite flat and featureless.  The spectral types compatible with the X-type designation include the 
very bright E-type asteroids, the moderately-bright M type (metallic) asteroids, and the very dark 
D-type (cometary) bodies.  The large X-type NEA 2013 UQ4, roughly 10 km in diameter, is in a 
retrograde orbit with a perihelion at 1.08 AU.  Its reported albedo is 0.04, which, if verified by 
other observations, is compatible with it being both a short-period comet and a D-type NEA.  It is 
a member of the Damocloid family of dormant Jupiter-family comet nuclei, of which at least 60 
have been identified, only five of which approach closely enough to the Sun to qualify as NEAs.  
The type example, 5335 Damocles, formerly 1991 DA, has a perihelion of 1.58 AU and is not 
presently an NEA, although numerical integration of its orbit suggests that it should spend about 
25% of its time in Earth-crossing orbit. 
 
2. Energy Requirements for Heating Feedstock 
Water and carbon dioxide, the essential and dominant carriers of H, C, and O in carbonaceous 
asteroids, must be released from their parent asteroid regolith by solar heating.  The released gases 
are complex in composition, reflecting temperature, time, heating rate, gas back-pressure, and the 
kinetics of poorly-understood chemical reactions. 
Energy is absorbed during the process of baking the regolith, partially as heating of the solids 
(CpΔT) and partially as the heat of decomposition (water vaporization) of the phyllosilicate 
(ΔHovap).  Both numbers vary slowly with temperature, and vary in opposite senses.  Uncertainties 
in predicting gas release profiles (emitted gas flux and composition vs. temperature during heating) 
are introduced by the complex nature of, and lack of thermodynamic data on, the organic polymer 
and by the poorly characterized phyllosilicates, which commonly exhibit a diffuse X-ray powder 
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pattern implying a wide range of structures, compositions, and thermodynamic properties (i.e., 
water vapor pressure) of coexisting, and probably interleaved, layer-lattice silicates. 
Thermodynamic calculations on the release of volatiles from heated CI material are only 
suggestive because true equilibrium is not attained in the time/temperature regime of interest; 
nonetheless H2O, CO2, and SO2 are produced along with a few percent H2S (H2S/H2O = 0.03) and 
a fraction of a percent of H2 (H2/H2O = 0.003 at 1200K (927 oC).  Of these gases, the ones of 
greatest immediate economic interest and utility are water vapor and carbon dioxide.  There is 
reason to prefer relatively low-temperature (below 700 K) extraction of water vapor to avoid the 
complications introduced by the vapor chemistry of sulfur, however at this lower temperature 
carbon dioxide release is also lower. 
The principal sources of thermodynamic data on reactants and products used herein are the JANAF 
Thermochemical Tables5 (principally for gases), Domalski’s6 tables (for organic compounds), and 
Robie and Hemingway’s7 U. S. G. S. Bulletin 2131 (for the thermodynamic properties of 
minerals). A set of detailed process simulations has also been conducted by our collaborator Sam 
Spencer (examples included later in this report) using mining/oil/gas industry-grade process-
modeling software, namely SysCAD v9.2 (http://www.syscad.net/) and HSC v5 for 
thermodynamic data (http://www.outotec.com/en/Products--services/HSC-Chemistry/). For the 
results of these simulations, see Section 17. 
 
Water:  Heating bulk CI material from ambient asteroidal surface temperatures (about 200 K) to 
the point at which large-scale evolution of water vapor occurs (about 700-800 K) depends on the 
heat capacity of the bulk solids, which we estimate as roughly 1200 J/kg.K, or 720 kJ/kg, or 720 
MJ/tonne.  The heat of decomposition (“water vaporization”) of the hydrous silicates, which must 
also be included, is not the usual heat of vaporization of water, but the overall enthalpy change of 
the reaction which releases water vapor, including all reactants and products. 
The first example of water vapor release is simply the evaporation of water (sublimation of ice): 
 
 H2O(s)             H2O (g) 
  ice Ih            water vapor 
 
An equally simple example of a mineral decomposition reaction is the heating of brucite:  
  
 Mg(OH)2        MgO      +      H2O(g) 
 brucite              periclase               water vapor 
 
This reaction produces a water partial pressure of 1 bar at 540 K (267 oC).   
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Other simple dehydration reactions producing a water partial pressure of about 1 bar at 540 K  
(267 oC) include: 

Fe(PO4).2H2O      Fe(PO4)2   +   2 H2O(g) 
strengite      ferrous phosphate              water vapor 
 
MgSO4.7H2O          MgSO4         +         7 H2O(g) 
epsomite       magnesium sulfate           water vapor 
 
CaSO4.2H2O       CaSO4   +   2 H2O(g) 
gypsum        calcium sulfate           water vapor 

 
More realistic is the dehydration of serpentine (as lizardite or chrysotile) and/or of talc: 
 5Mg3Si2O5(OH)4     6Mg2SiO4  +  Mg3Si4O10(OH)2  +  9H2O(g) 
 serpentine    forsterite              talc           water vapor 
 

Mg3Si4O10(OH)2     3 MgSiO3   +    SiO2    +      H2O(g),  
 talc                    enstatite         quartz     water vapor 
 
which delivers 1 bar partial pressure of water vapor at 800 K.   
Typical of clay minerals is kaolinite, which decomposes to kyanite, quartz and water vapor upon 
heating via the reaction: 
 Al2Si2O5(OH)4    Al2SiO5   +   SiO2   +   2H2O(g), 
    kaolinite            kyanite         quartz    water vapor 
 
which has an enthalpy cost of 135.4 kJ mol-1 of kaolinite at 800 K (thermodynamic data from 
USGS Bulletin 2131)7. This is equal to 0.52 kJ per gram of kaolinite, which is 14 % water by mass.   
Thus decomposition of a pure kaolinite feedstock would absorb 520 MJ per tonne and release 140 
kg of water.  The average heat capacity of kaolinite over the range 200-800 K is about 1.2 J/gK, 
or 720 MJ/tonne.  Thus the total energy cost of extracting the water is 1240 MJ per tonne of solids, 
or 8.7 GJ per tonne of water.  Much of this heat, at least 50% and perhaps 75%, can be recaptured 
by using the heat content of the spent solid charge and heat of condensation of water to heat 
incoming asteroidal material. Cooling water vapor from 800 K down to the condensation point 
releases about 4300/0.2392x18 J/g (1.00 GJ/tonne). The heat of condensation of liquid water at 
298 K is 582 cal/g (2.43 GJ/tonne), and for direct condensation to water ice Ih, it is about 2.84 
GJ/tonne at -10oC.   (Total heat release from the cooling and condensing water therefore ranges 
from 3.4 to 3.8 GJ/tonne of water.)  Heat release from the residual solids is on the order of 480 
MJ/tonne solids, but the mass of spent solids is 86/14 times the mass of water, so the perfect 
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recovery of heat from the solids left after extraction of 1 tonne of water provides 2.85 GJ/tonne of 
water, giving a total heat content of about 6.5 GJ/tonne water.   
Another phyllosilicate found in CI chondrites is montmorillonite, a clay of the smectite family 
nominally having the formula Al4Mg6(Si4O10)4(OH)8.nH2O, which is commonly also host to 
variable amounts of sodium, calcium, potassium, iron and other minor cations.  Sodium-bearing 
montmorillonites are strong absorbers of water, with very complicated and composition-dependent 
affinity for water and consequently with very complex water-release behavior.  Montmorillonite 
is a voracious host of interlayer water, which leads to swelling of the clay to several times its “dry” 
volume.  Commercial bentonite, a “swelling clay”, consists largely of montmorillonite.  The water 
content of sodium-bearing varieties can be as high as several times the dry mass of clay.  All clays 
in this family have a remarkable ability to exchange ions with interstitial solutions, enhancing the 
compositional diversity of the clays.  As little as 2% montmorillonite in the CI parent body could 
hold enough water to account for 10% water in the total mineral mix.  Most of this water would 
be rather loosely bound and therefore vulnerable to easy loss and to chemical and isotopic 
exchange with Earth’s atmosphere.  The water release profile of smectite clay cannot be calculated 
from basic principles, and must be measured for each specific clay composition. 
 
An important process in the history of CI chondrites was the serpentinization of the high-
temperature minerals olivine and pyroxene by reaction with liquid water.  Serpentine (as 
represented by the structurally and chemically similar minerals chrysotile, lizardite and antigorite)7 
and coexisting brucite (or any thermodynamically compatible Mg-rich clay) would release water 
upon heating, reconstituting forsterite olivine: 
 
 Mg3Si2O5 (OH)4  +  Mg(OH)2    2 Mg2SiO4  +    3 H2O(g) 
 serpentine            brucite       forsterite      water vapor  
 
Thermodynamic data are available for this reaction7 in USGS Bulletin 2131.   
 
Poorly characterized iron oxide species in carbonaceous chondrites and C asteroids probably 
include goethite and maghemite (both with formula FeOOH), which decompose upon heating to 
release water via: 
 
 2FeOOH          Fe2O3  +    H2O (g)  
 goethite  hematite  water vapor 
 
A graph of the water pressure curves for a variety of hydrous minerals is given in Fig. 1: 
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Fig. 1   Decomposition pressures of various hydrous mineral phases.  The equilibrium vapor pressures over liquid 
water, goethite/hematite, serpentine, brucite/periclase and talc/enstatite + quartz are shown as a function of 
temperature.  The important decomposition behavior of montmorillonite cannot be graphed because of the extreme 
compositional variability of the clay and the several modes of water attachment to the clay.  Equilibrium is 
unattainable at low temperatures because of the structural complexity of CI chondrites; however, note that even at 
700 K the pressures of all these water buffers lie above 1 bar (105 N/m2). 
 
The solar energy required to extract water (8.7 GJ per tonne of water) over a one-year period could 
be supplied by a solar reflector with a collection area sufficient to provide 8.7x109/3x107 J/s = 290 
W; for 1000 tonnes of water we require 290 kW continuous power.  At 1 AU from the Sun, 1 m2 
of solar collector provides 1350 W; at 3.16 AU the power drops to 135 W per square meter.  To 
produce enough thermal power to generate 1000 tonnes of water in one year at 3.16 AU requires 
2150 m2 of collector area, a circle 52 meters in diameter.  If the water extraction is done at 1.0 AU 
from the Sun (such as on a low-eccentricity NEA), a solar collector with a diameter of 17 m would 
suffice over one year of exposure. 
Carbon dioxide release can occur via several different reactions.  First, and easiest to quantify, is 
the relatively minor amount of CO2 released by thermal decomposition of carbonates8 such as 
siderite (FeCO3), dolomite (CaMg(CO3)2) and calcite (CaCO3).  
Siderite can decompose directly upon heating by two different pathways: 
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 FeCO3  FeO + CO2     the siderite/wuestite buffer 
 3FeCO3  Fe3O4 + 3 CO2 + CO.   siderite/magnetite equilibrium 
Since siderite in carbonaceous meteorites coexists with magnetite, either or both of these 
decomposition reactions may be relevant.  The thermodynamic data on siderite are incomplete and 
of rather low quality, making accurate calculation of the gas release behavior impossible. 
Both calcium and magnesium carbonates are also found in CI chondrites, mainly as calcite and 
dolomite, although magnesite (MgCO3) has also been reported. The relevant decomposition 
reactions are: 
 MgCO3  MgO + CO2    magnesite/periclase buffer 
 CaMg(CO3)2  CaCO3 + MgO + CO2  dolomite/calcite/periclase buffer 
 CaCO3  CaO + CO2     calcite/lime buffer 
Strictly speaking, carbonates are usually destroyed by reaction with silica-bearing minerals via 
reactions that take up the highly reactive periclase and lime, schematically: 
 MCO3 + SiO2  MSiO3 + CO2. 
However, since there is no free silica in carbonaceous chondrites, this reaction path requires 
intimate contact between carbonate minerals and silicate phases from which they can extract silica 
with thermodynamic activities far less than 1.000 (the case of pure coexisting silica).  This is 
generally not the case and is not considered in this study. 
At higher temperatures we also have CO2 released by the reaction of organic polymer with 
abundant magnetite, effectively  
 CxH2y + Fe3O4  xCO2 + yH2O + 3Feo.   
The latter CO2 source cannot be modeled quantitatively at lower temperatures because of lack of 
both thermodynamic and kinetic data on the polymer; however, the organic polymer would char 
and eventually graphitize at elevated temperatures, suggesting that a graphite activity of 1.0 would 
be a reasonable approximation above 1000 K.  Note that this process of oxidizing organic matter 
by reaction with magnetite also releases the sulfur and nitrogen contained in the polymer. One 
example of this is the oxidation of the trace amino acid alanine: 

8 CH3CH(NH2)COOH + 15 Fe3O4   24 CO2       +       28 H2O(g)  +     45 Fe(s)  +  4 N2 
alanine                 magnetite carbon dioxide    water vapor          iron       nitrogen 

Sulfur Dioxide: With rising temperatures the mineral assemblage changes from the assemblage 
pyrite/pyrrhotite/magnetite/anhydrite at 800 K to pyrrhotite/magnetite/anhydrite or (with more 
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oxidation) pyrite/magnetite/anhydrite/magnesium sulfate at 1000 K.  The equilibrium phase 
diagram for the relevant minerals at 800 (Fig. 2) and 1000 K (Fig. 3) in the Fe-S-O system, graphed 
on a format of log pS2 vs log pO2, is marked with x to show the sequence of mineral changes and 
gas composition as a function of the degree of oxidation.   
 

 

Fig. 2   Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 800 K.  The strong solid lines demarcate 
the stability fields of Fe metal (kamacite), FeO, Fe3O4 (magnetite), Fe2O3 (hematite), FeS (troilite), Fe1-xS (pyrrhotite), 
FeS2 (pyrite), Sl (liquid sulfur), CaSO4 (anhydrite) and MgSO4.  The diagonal lines give contours of the log10 of the 
equilibrium SO2 pressure from 10-25 b (lower left to 1015 b in the upper right.  The line marked x, progressing from 
left to right, marks the trajectory of mineral compositions followed during sequential oxidation.  Note that the sulfur 
vapor pressure (S2) and the SO2 pressure both reach maxima at the point at which magnesium sulfate first appears.  
The equilibrated mineral assemblage in a CI chondrite would lie near this point.  Note that at 800 K the sulfur vapor 
pressure reaches about 0.01 b and the SO2 pressure reaches about 10 b.  Other sulfur gases including H2S and COS 
may also be important. 
 
At any relevant temperature, the SO2 partial pressure goes through a maximum, which also occurs 
at the point of maximum partial pressure of sulfur vapor (S2).  Beyond 1000 K, at somewhat higher 
temperatures, pyrite melts incongruently at 1083 K, forming solid pyrrhotite and a liquid sulfur-
rich melt.   As temperatures are raised from 800 K to 1000 K all sulfur-bearing gas pressures 
increase: the 800 K assemblage produces about 0.01 b SO2 and the 1000 K mineral suite yields 
about 0.05 b; further oxidation beyond the appearance of magnesite and disappearance of sulfides 
yields an abundance of S2 vapor that is about 10% of SO2 at the 800 K point and roughly equal to 
SO2 at 1000 K.   



Deep Space Industries Inc.  In-Space Production 
NNX15AL85G  of Storable Propellants 
 
 

 
13 

 

 

Fig. 3  Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 1000 K.  The strong solid lines demarcate 
the stability fields of minerals as in Fig. 2.  The dashed lines give contours of log10 of the SO2 partial pressure in b.  
The peak equilibrium SO2 pressure occurs at an oxidation state that corresponds to the coexistence of CaSO4, MgSO4, 
Fe3O4 and the pyrrhotite-pyrite boundary, consistent with equilibration of the minerals seen in CI chondrites.  The S2 
partial pressure at that point is about 0.1 b, compared with about 100 b for SO2. 
 
At slightly higher oxidation states the partial pressures of sulfur gases drop rapidly due to the 
formation of low-volatility sulfates such as anhydrite (CaSO4) and MgSO4.  Sulfur gases are 
therefore likely to be significant contaminants in the water and carbon dioxide released at all 
temperatures.  Certain sulfur gases, such as hydrogen sulfide, sulfur dioxide, carbonyl sulfide and 
sulfur trioxide, would impart unpleasant and even toxic smells and tastes to water.  Sulfur dioxide 
dissolves extensively in cold water (228 grams per liter of cold water at 1 bar partial pressure of 
SO2) to make the weak acid H2SO3, sulfurous acid.  The SO32- (sulfite) ion in sulfurous acid is 
unstable and spontaneously disproportionates into sulfate and elemental sulfur:  
 
 3H2SO3  2H2SO4 + H2O + So. 
 
H2SO4, sulfuric acid, is of course a strong acid. Disproportionation is the process by which one 
unstable oxidation state splits into products with both higher and lower oxidation states.  It could 
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equally well be called a self-oxidation-reduction reaction.  Here S4+ disproportionates into S6+ and 
So (schematically, 3S4+  2S6+ + So).   This happens spontaneously and requires no other reactant, 
occurring even when there is no oxidizing agent added.  Certain materials act as catalysts to 
accelerate the disproportionation reaction.  Sulfuric acid, the main product of disproportionation, 
is a problem because it threatens corrosion of metal plumbing, reaction vessels, tanks, etc.  Any 
additional oxidizing agent that may be present simply accelerates the conversion of sulfite into 
sulfate.  Elemental sulfur, most likely rhombic sulfur, can also create problems by depositing as 
solid sulfur dust in the gas system.  Rapid quenching of a gas rich in sulfur vapor (principally S2) 
causes precipitation of a glassy polymeric sulfur phase, an even worse contributor to clogging of 
pipes and valves. Some materials may act as catalysts and accelerate the rate of disproportionation 
of sulfite, but without changing the results.   
 
In addition to diatomic sulfur and sulfur oxides, the released gases must contain carbonyl sulfide 
(COS) and hydrogen sulfide (H2S).  Gas-phase equilibria of sulfur-bearing gases are generally 
rapid, so the equilibrium assumption for the reactions 
 
 H2O + ½ S2  = H2S + ½ O2 
 CO2 + H2S = COS + H2O 
 
is probably an excellent approximation.  These reactants are also linked by the water gas reaction, 
 
 H2O + CO = H2 + CO2 
 
Management of sulfur is important for four basic reasons: sulfuric acid is, as mentioned above, 
corrosive.  Sulfur also poisons catalysts of several important chemical reactions and, as mentioned 
above, sulfur deposition threatens to block pipes and valves.  Finally, sulfuric acid is potentially 
an extremely valuable industrial reagent for mineral processing and metal extraction, which creates 
a strong incentive to control sulfur chemistry and to conserve and manage the products.  This is 
most easily done by complete oxidation of sulfur dioxide to sulfur trioxide,  
 
 2SO2 + O2  2SO3 
 
which is removed by a wet scrubber as sulfuric acid, taking advantage of the extremely 
hygroscopic nature of sulfur trioxide.  
 
 SO3 + H2O(l)  H2SO4. 
 
This is standard practice in terrestrial mineral industry applications. The concentrated sulfuric acid 
from the scrubber could be retained in an appropriate container such as Teflon-coated or 
chemically passivated metal for future use. 
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The presence of reactive sulfur gases in the gases released by any but the mildest heating presents 
a complicating factor that cannot be ignored.  One possible means of dealing with sulfur is to 
electrolyze water to generate oxygen before the extracted water can be purged of sulfur compounds 
for safe use and storage.  Whether this must be done on the asteroid is an open issue.  Uncertainty 
in the release behavior of sulfur and carbon oxides during heating is an issue that can only be 
resolved experimentally, an urgent task for Phase II.  Alternate means of purification of water on 
the asteroid must also be studied and proven experimentally.  
 
Although combustion of sulfur compounds has been suggested by David Vaniman9 and coworkers 
for use in rocket engines, especially in the context of lunar-derived propellants, the molecular 
weight of the exhaust products is so high (molecular weight of 64 for SO2; 80 for SO3), and sulfur 
trioxide is so corrosive and noxious, that we must regard the use of sulfur compounds as 
propellants to be far less attractive than their industrial use.  However, if some means of using 
sulfur as a propellant can be developed, it is clear that many classes of asteroidal material, which 
have 5-6% by mass sulfur, are vastly more amenable to this use than lunar surface materials, which 
average about 0.05 to 0.10% total sulfur content.  Once again, as with H, C, and Fe metal, lunar 
concentrations of these marketable materials are typically several hundred times lower than in 
most meteorites and asteroids. 
  
Nitrogen and Ammonia: The earliest studies on the freshly-fallen Orgueil CI chondrite by Cloëz10 
and Pisani11 in 1864 reported a strong odor of “sal ammoniac” (ammonium chloride) which 
quickly dissipated over time, and which was not found in analyses a century later.  Thus we may 
find that early low-temperature gas release will produce ammonia and HCl until primordial NH4Cl 
is exhausted. (NH4Cl itself does not exist in the gas phase.)  Release of nitrogen from the polymer 
as it is oxidized by reaction with magnetite will further complicate the issue, but ammonia will be 
destroyed at these temperatures and this oxidation state, generating molecular nitrogen.  There is 
a further possibility that the ammonium ion NH4+, which has the same ionic charge and virtually 
the same ionic radius as potassium ion K+, may populate alkali metal sites in phyllosilicates.  The 
equilibrium constant for the exchange reaction: 
 NH4+ (aq) + K(phyllosilicate) = K+(aq) + NH4(phyllosilicate) 
is known to be close to 1 for a variety of host minerals, including feldspars; thus “fossil” 
ammonium ion may still reside in solid silicates and salts even after the loss of the much more 
volatile ammonium chloride.  The spectral signature of ammonium ion is in the same spectral 
region as the 3-μm “water band”, the fundamental stretching frequency of the O-H bond.  The 
Dawn mission’s studies of the thermally altered carbonaceous asteroid Ceres show the possible 
spectral signature of ammonium ion. 
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The organic polymer has a nitrogen content equivalent to about one N atom per 6 to 10 C atoms, 
totaling about 0.6% by mass of the total meteorite.  Some of the nitrogen is bound in heterocyclic 
aromatic fragments, some as nitrile groups –CN, and some as amine groups –NH2.  Thermal 
deamination of the amines and decarboxylation of carboxylic acid groups will release ammonia 
and carbon dioxide at relatively low temperature, accompanying water release from organic -OH.  
Hydrolysis of nitriles with release of HCN, cyanogen, and possibly N2 will occur at higher 
temperatures.  Complete destruction (via “combustion”) of the polymer with release of structural 
N as N2 requires the highest temperatures, probably close to 1000-1200 K.  Oxidation appears to 
be an essential step to destroy HCN to make the extracted water safe for use in life-support systems.  
Unfortunately the speciation of N in the organic matter and the temperature release behavior of 
nitrogen-bearing gases are both poorly known.  
Because of these uncertainties, release of these organic and inorganic nitrogen components from 
heated asteroidal or meteoritic material cannot be modeled with existing data except in the high-
temperature limit of complete gas release, under conditions closely approaching equilibrium, 
where the N2 partial pressure should approach 5% of the CO2 pressure. 
For study purposes the only current source of nitrogen in the C asteroid regolith is assumed to be 
the organic polymers (see carbon dioxide release). 
 
3. Recovered Water and its Uses 
As we have seen, there is good reason to suspect that significant traces of sulfur and nitrogen 
compounds may be present among the gases released by heating C asteroid material.  At present, 
the presence of these minor constituents does not appear to compromise the immediate planned 
uses of the major released volatiles, water and carbon dioxide, but does encourage the use of 
relatively low extraction temperatures to minimize release of S and N gases and simplify the 
processing scheme.  At a later stage, when propellant production is underway, higher release 
temperatures and more complete gas extraction will be required: dealing with these impurities will 
then become essential. 
In the context of the present research, our ultimate purpose in studying water extraction is to make 
available the raw materials for synthesizing storable chemical propellants.  However, it is also 
obvious that water itself is a storable propellant that can be utilized by several different types of 
propulsion systems that derive their energy from sources other than chemical combustion.   
There are several notional electrical propulsion schemes for using water as the working fluid, all 
at an early stage of development.  All depend on the generation of large levels of electric power 
by means of photovoltaic arrays (or nuclear reactors).  The principal alternative to electric 
propulsion is Solar Thermal Propulsion using water, in which a lightweight solar collector focuses 
sunlight onto a highly refractory rhenium thrust chamber and heats it to very high temperatures, 



Deep Space Industries Inc.  In-Space Production 
NNX15AL85G  of Storable Propellants 
 
 

 
17 

2800 to 3000 K.  Water is then run into the thrust chamber where it flash-evaporates and exits from 
the thrust chamber nozzle as extremely hot water vapor.  Specific adaptations of STP technologies 
can deliver specific impulses as high as 400 to 1100 s.  STP is a very high thermal stress 
mechanism, so it is hard to design a spacecraft that uses it.  Studies by James Shoji and coworkers, 
beginning at Rocketdyne in the 1960s under NASA and USAF funding12, and recent work by 
teams at Ultramet, Marshall SFC, and UAH13 on fabrication of highly refractory rhenium thrust 
chambers, are valuable beginnings, but mission concepts for STP exist only on paper.  A recent 
survey by Kennedy14 summarizes the prospects for STP use.   
Solar Thermal Propulsion is singularly suited to moving massive bags of material (water, storable 
propellants, metals, radiation shielding, and raw materials) from one place to another.  In addition 
to moving asteroid material to HEEO, there will be a need to move large amounts of mass from 
LEO to GEO, the Moon, or to Mars for exploration or settlement.  At high propellant flow rates 
and chamber temperatures similar to that of a hydrogen-oxygen flame, the water exhaust can 
deliver close to 400 seconds Isp.  At very high temperatures of 2800 to 3000 K and at low water 
flow rates (low chamber pressures) water vapor extensively dissociates into H and O atoms, 
causing a decrease of the mean molecular weight of the exhaust from 18 to 6.  The combined effect 
of the higher temperature and the lower molecular weight is to increase the specific impulse to 
over 600 seconds at the sacrifice of high thrust levels.  The ability of rhenium to resist oxidative 
attack by water vapor under these extreme conditions is problematic, suggesting consideration of 
thoria (ThO2) as the thrust chamber material.  The performance of such a propulsion system, 
whether using rhenium or thoria, should be relatively insensitive to the presence of trace impurities 
such as ammonia and sulfur dioxide. 
 
A very important point is that a propulsion system that uses sunlight directly has about a factor-
of-5 advantage over solar electric systems because of the low conversion efficiencies of the latter, 
irrespective of distance from the Sun.   
 
 
4.  Electrolysis of Water for STP or Direct Combustion 
 
Water can be electrolyzed into oxygen and hydrogen, and then the hydrogen liquefied for use in 
STP engines, in place of water.  This achieves partial dissociation of molecular hydrogen, 
producing an exhaust with mean molecular weights between 1 and 2, and realizing Isp values of at 
least 1000 seconds.  STP technology, whether based on water or hydrogen, is obviously worth 
pursuing with the clear goal of using it specifically for our stated purpose of moving large loads 
of material.  Each kilogram of exhaust from a water-driven STP engine contains nine times the 
mass and one third the velocity of the exhaust from a hydrogen STP engine operating at the same 
temperature, therefore delivering three times as much momentum as the hydrogen-driven 
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alternative.  However, it is water we would be mining, not hydrogen: the amount of exhaust 
momentum (total impulse) per kilogram of mined water for the water exhaust system is 27 times 
as high as for the hydrogen exhaust system.  Clearly, grasping for the highest possible Isp is the 
wrong strategy: maximum total impulse from our mined water is what we require.  This does not 
rule out the use of hydrogen-exhaust STP systems for specialty applications, but does emphasize 
that the better performer, and also by far the simpler of the two alternatives for moving large 
masses, is direct use of water as the exhaust. 
 
Electrolysis of water and burning of the gases can provide 300 to about 380 seconds Isp. This 
technique can be implemented either by electrolysis of water and refrigeration/liquefaction of 
hydrogen and oxygen on the asteroid, or by real-time combustion of the electrolysis products in 
flight.  Again, the most difficult part is in designing an electrolysis and refrigeration/liquefaction 
system that produces cryogenic liquid oxygen and hydrogen. The technology of H/O thrusters is 
of course well understood, so long as the propellant enters the thruster as cryogenic liquids.  
  
Mason Peck’s version of this scheme15 (with the evolved gaseous H2 and O2 from electrolysis 
going directly into the combustion chamber), which can roughly be characterized as “storable” in 
the sense that it is non-cryogenic, probably has a slightly lower Isp than the cryogenic version, but 
promises lower overall mass and greater reliability through simplicity for the engine and 
propellant-handling system because cryogenics are avoided.  The problem with this “prompt use” 
scheme arises from the need to do large-impulse burns, such as for Earth capture, quickly: this 
requires accumulating a large mass of gaseous hydrogen and oxygen, which while avoiding the 
penalties associated with liquefaction and refrigeration, incurs a compensating penalty because of 
the large tank volumes and masses needed to contain the gases until their use.   
 
The closely related HYDROS16 thruster from Tethers Unlimited is a pulsed gaseous O2 + H2 
thruster with a very low level of complexity and an Isp of about 300 s.  It is possible to make a 
rocket out of this mechanism, but difficult to make a good one. In any case, avoidance of 
cryogenics is a great simplifying factor; however, here again the requirement for storage of large 
masses of gas to make short, high-impulse burns implies high tank volumes and pressures and thus 
incurs countervailing tankage penalties.   
 
The use of gaseous hydrogen and oxygen also implies that cryogenic liquids are not available for 
regenerative cooling of the thrust chamber.  We envision the use of water for any required cooling 
of such engines.  Obviously care should be taken to minimize the sulfuric acid content of the 
coolant stream. 
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5.  Electrolysis of Water for Manufacture of Storables 
Production of fuels and oxidizer from asteroidal feedstocks requires the use of water and carbon 
oxides to manufacture combustible organic fuels and hydrogen peroxide oxidizer.  The 
manufacture of fuels inevitably requires the use of hydrogen and carbon oxides; the production of 
H2O2 requires the use of water and oxygen.  Production of the necessary hydrogen and oxygen 
gases is by means of electrolysis of water.  Since water itself is a poor electrical conductor, low 
concentrations of electrolytes such as salts, ammonia, sulfuric acid, or alkali metal hydroxides 
must be present in the water, a condition that is likely to be met automatically in water condensed 
from a CI or CM source.  Hydrogen is released at the cathode and oxygen is released at the anode.  
In terrestrial applications, gravity naturally separates the evolved gases from the liquid electrolysis 
medium; in space, as on the ISS17, where electrolysis of water is used to regenerate oxygen for 
breathing, the equipment design incorporates a method of separating gases from liquid and keeping 
the evolved gases separate from each other to avoid producing explosive mixtures.  This is a mature 
high-TRL technology with years of flight heritage. 
The energy (enthalpy) cost of liquid water electrolysis is 286 kJ per mole (15.9 GJ/tonne) of water, 
which must be supplied by photovoltaics.  (Note that electrolysis of water is more energy-intensive 
than extracting the water from its host minerals.)  We shall first consider a system architecture in 
which electrolysis of water takes place on an asteroid.  A typical asteroid with a useful (volatile-
rich) composition and an accessible orbit (low i; q close to 1 AU) may have aphelion distance Q 
between 2.5 and 3.3 AU; for the moment, we shall use 3.16 AU for purposes of illustration 
(although obviously lower aphelion distances would be preferable).  The intensity of sunlight at 
aphelion then would, as above, be 10% of the Solar Constant at 1 AU, or a thermal flux of 135 
Wt/m2.  Assuming 20% conversion efficiency for sunlight into bus power, we can expect 27 We/m2 
of solar array area. At these large distances from the Sun, it is highly desirable to save weight by 
using a large, light-weight reflector to concentrate sunlight onto a much smaller area of solar cells: 
a 10:1 concentration ratio and a collection efficiency of 85% permits 1 MWe electrical power 
generation at 3.16 AU by collecting 6 MWt of sunlight, which requires a collector area of 4x104 
m2, a circular reflector with a diameter of 226 m.  The photovoltaic array would then cover 3700 
m2, a 61 m square.  Over one year, this system at 3.16 AU could electrolyze 1875 tonnes of water, 
or about a half tonne per square meter of photovoltaic cells.  However, the requirement to spend 
one entire year on propellant synthesis may be a serious detriment to the economics of the mission, 
forcing the use of non-optimum launch windows for both the outbound and inbound legs. 
During the processing of water, there is also a possibility of electrolyzing water vapor by means 
of solid-state electrolysis, using yttrium-doped zirconia membranes.  This technology is virtually 
identical to that developed for use in high-temperature gas-phase electrolysis of carbon dioxide 
into CO and oxygen for use in propellant production on Mars.  Conduction of the O2- ion through 
the membrane permits separation of oxygen from hydrogen.  The gas-phase electrolysis of water 
vapor also requires less electrical power than liquid-phase electrolysis of water, since the vapor 
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already has a substantial heat content.  Although the total energy cost of production of hydrogen 
and oxygen is unchanged, electrolysis of the vapor leads to a more favorable (lower) ratio of 
electrical to thermal energy demand, which reduces the mass and complexity of the electrical 
power generation equipment.  This advantage is lost if the heating is provided electrically. 
At 1 AU from the Sun, the preferred location of the propellant manufacturing and storage facility, 
the solar flux is 10 times as large and the area and mass of all solar collectors and photovoltaic 
arrays are 10 times smaller than those that would have been required at the asteroid’s aphelion.  
Further, the time available for processing becomes both longer and more flexible.  In, for example, 
highly eccentric Earth orbit (HEEO) or an Earth-Moon Lagrange point, a 5 MWt solar collector 
would require a diameter of only 70 m.   
 
6. Where Should we Make Propellants? 
To attempt the manufacture of storable propellants on a pioneering asteroid-mining mission is to 
depend on a complex mechanical and chemical system operating on an imperfectly characterized 
feedstock in a hostile environment in which we have little relevant experience.  The task of 
carrying out an early synthesis and retrieval of propellants should not be entrusted to such a 
complex autonomous system.  We strongly favor the use of the first retrieval mission to extract 
sufficient impure water for use of a Solar Thermal Propulsion system to return 100 tonnes of water 
(and a sample of unprocessed asteroidal material) to Earth orbit, where experiments to optimize 
the processing scheme for that exact composition type can be carried out.  After the first retrieval 
mission, we envision massive extraction of impure water and CO2 at the asteroid, which enables 
the use of solar thermal propulsion to return hundreds of tonnes of these materials to the Earth-
Moon system.  It is more realistic to imagine the processing steps that manufacture propellants as 
occurring at 1 AU from the Sun, in Earth orbit, under direct human supervision or via teleoperation.  
The propellants thus produced would then be available close to the site of their greatest demand, 
in LEO, GTO, GEO, and HEEO (for crewed missions to Mars, because assembly and final fueling 
in HEEO has some advantages over marshalling the units in LEO). 
 
7.  Storage and Transportation of Water and Carbon Dioxide 
Carbon dioxide readily forms a clathrate hydrate under easily accessible conditions.  At elevated 
CO2 pressures (about 30 bars) the solid hydrate even forms spontaneously18 from liquid water at 
temperatures up to 281 K.  At 10 bar pressure, liquid carbon dioxide and water ice form a solid 
hydrate of approximate formula CO2.5.75 H2O that is stable between 230 and 273 K, and at 1 bar 
pressure the hydrate is stable from 192 to 218 K (Fig. 4), close to typical NEA surface 
temperatures.  It is useful to note that the clathrate hydrate, once formed, is resistant to gaseous 
CO2 loss even outside its equilibrium stability range: when solid clathrate hydrate is heated to 240 
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K (22 K above the phase stability boundary in Fig. 4) at 1 bar pressure, only 3% loss of gas 
occurs18.  With further heating at 1 bar, the hydrate persists metastably up to 271 K, at which 
temperature it decomposes rapidly.   

    
Fig. 4   The equilibrium stability field of CO2 clathrate hydrate (H; the red-shaded area) vs. pressure and temperature.  
At temperatures below the lower stability of the hydrate water ice coexists stably with liquid or solid CO2; at 
temperatures above the stability field, there is insufficient CO2 pressure to force formation of the hydrate.  However, 
the hydrate, once formed, has a high activation energy barrier for loss of CO2 and can persist metastably up to about 
271 K at 1 b pressure. 
 
The observed metastable persistence of the hydrate outside its equilibrium stability field is due to 
the high activation energy for escape of carbon dioxide molecules from their clathration sites. 
Alternatively, cooling the hydrate from formation conditions within the equilibrium stability field 
and storing the hydrate at lower pressures is even less risky because the lower temperatures inhibit 
the, diffusion of CO2 molecules out of the clathrate lattice even more strongly. 
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Several trace gases may accompany (and substitute for) the carbon dioxide in the hydrate: nitrogen 
and hydrogen sulfide are possibilities.  Note that clathrate hydrates form from molecules with 
small or zero dipole moments.  The polar molecule ammonia, if present, can form a hydrate 
NH3.H2O which is not a clathrate; however, in the presence of a probable very large excess of CO2 
it would form NH4HCO3 (ammonium bicarbonate) or NH4CO2NH2 (ammonium carbamate) 
instead.  The former would evaporate to give off ammonia, water vapor, and carbon dioxide.  The 
latter would vaporize to release carbon dioxide and ammonia or, at higher temperatures, dehydrate 
to form urea (H2NCONH2).  Carbon monoxide can also react with ammonia to make formamide, 
HCONH2, a molecule found at the level of 3.73% of the gases detected by the Rosetta mass 
spectrometer experiment (COSAC) being released from the comet Cheryumov-Gerasimenko.  
Formamide can decompose into CO and ammonia, or into water and HCN, in either case making 
highly toxic products.   
 
8.  Methanol/Dimethyl Ether Synthesis 
Using selective catalysts, hydrogen and carbon oxides can be used to make storable methanol 
(CH3OH), or other combustible organic molecules such as methane (a “soft” cryogen) or dimethyl 
ether (H3COCH3), with high efficiency.  The most common method for making methanol involves 
reacting a gas stream of hydrogen and carbon monoxide (or dioxide) on a catalyst bed consisting 
of CuO and ZnO on an inert support such as alumina (2H2 + CO  CH3OH).  High yields are 
encouraged by having an excess of hydrogen, which also allows the use of CO2 along with, or in 
place of, CO.  Moderate pressures (a few atmospheres) and temperatures (250 to 300oC) in the 
reaction vessel are sufficient19.  Of course, recycling of the (dried) unreacted gases is essential to 
achieve overall process efficiency.  
We favor reactions that can utilize either carbon monoxide or dioxide; if CO is demonstrably 
superior for thermodynamic or kinetic reasons, it can be produced from CO2 via the use of Solid 
Oxide Electrolysis, with hydrogen being produced from standard electrolysis of water: 

Electrolysis (67°C) 
2 H2O(l)   +  Energy    2 H2  + O2 
water               hydrogen          oxygen  
Solid Oxide Electrolysis (850°C) 
2CO2   + Energy    2CO  + O2 
                     carbon monoxide         oxygen 

 
Dimethyl ether (DME) is either synthesized directly from CO and hydrogen by passage over an 
alumina catalyst, or can be made by dehydrating methanol with concentrated sulfuric acid: 
(CH3OH + HOCH3  CH3OCH3 + H2O).  The former, a two-stage process in which the reactant 
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gases make a single pass through a two-layer catalyst bed, appears to hold much more promise 
because of its simplicity and efficiency20.  That direct synthesis from CO and H2 is most efficient 
in the presence of methanol.  Methanol production requires lower pressures than DME production, 
and may be preferable despite its somewhat inferior performance as a propellant (lower Isp). 
Kinetic modelling of the synthesis of dimethyl ether in a single reaction step21 from (H2 + CO) and 
from (H2 + CO2) shows that the reaction of CO is faster and more efficient over a 
CuO−ZnO−Al2O3/γ-Al2O3 bifunctional layered catalyst, in which the first catalyst layer makes 
methanol and the second (γ-alumina) layer dehydrates methanol to DME. This model fits well the 
experimental results obtained in an isothermal fixed bed reactor over a wide range of operating 
conditions:  225−325 °C; 10−40 bar; space time, 1.6−57.0 (g of catalyst) h (mol H2)-1. The rate-
limiting step is the synthesis of methanol from (H2 + CO).  Synthesis from (H2 + CO2) is much 
less important.  Methanol dehydration by the γ-Al2O3 catalyst is very fast but requires high 
pressures.  Water in the feedstock has an inhibiting effect on the synthesis of methanol and the 
formation of hydrocarbons. This single-step, two-catalyst process permits attainment of yields 
higher than 60% of carbon converted into DME and 5% into methanol, when (H2 + CO) is fed at 
30 bar and 275 °C.  The unreacted gas is dried and recirculated through the reactor.  Note that, at 
higher reactor temperatures, hydrocarbons (mainly methane) are produced.   
 
If the feedstock is rich in carbon dioxide, a modification of this scheme is required.  A study of 
another bifunctional catalyst system22 using CuO-ZnO-Al2O3-ZrO2 plus HZSM zeolite (where the 
γ-Al2O3 catalyst is again responsible for conversion of methanol into DME) was used for the 
conversion of a CO2-H2 mixture.  Conversion efficiencies of CO2 into DME reached 21% with a 
methanol yield of 5.9% when the reaction was run at 5 MPa and 523 K.  They also found that, not 
surprisingly, recycling of the dried CO made in this process was desirable for improved efficiency. 
 
Separation of the DME from the methanol and water is required and can be conducted using a 
molecular sieve process. 
 
A large-scale commercial application of DME production via CO2 recovery is underway in 
Iceland23, where Misubishi has opened a plant for conversion of captured CO2 into methanol and 
thence into DME in a two-stage process utilizing the same basic chemistry as the previous system.  
They process CO2 emitted from a ferrosilicon plant, scrubbing the flue gases to remove sulfur as 
sulfuric acid in order to protect the catalyst bed.  The source of hydrogen gas is electrolysis of 
water.  Again, the last step in the process is making DME via the dehydration of methanol using a 
γ-Al2O3 catalyst. 
 
DME is the more desirable product because it has a higher heat of combustion (both per mol and 
per gram) than methanol and, unlike methane, is not a cryogen.  There are distinct advantages to 
storing DME at local (asteroidal) ambient temperatures (-20 to -60 oC) because its normal boiling 
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point is -24.81 oC and the vapor pressure of DME at 0 oC is 5 atm24.  The vapor pressure equation 
calculated from measured temperature points down to -25 oC is given by log10 pv(DME) = 7.69056 
– 1909.75/T(K), with pressures in atmospheres.  At -50 oC the vapor pressure is only 0.135 atm.  
DME’s freezing point of -138 oC (135 K) is so low that maintaining DME as a liquid would not 
be difficult.  The freezing point of methanol is 40 degrees higher. 
All that is lacking is a storable oxidizer that can be co-produced from the same reactants (water, 
carbon oxides) as DME: we propose hydrogen peroxide. 
 
9. Conventional (Earthside) H2O2 Synthesis 
Commercial hydrogen peroxide synthesis generally uses the anthraquinone process, which is 
dependent on an organic catalyst that has limited lifetime and cannot be replenished from sources 
in space.  A conceptually appealing alternative, direct synthesis of H2O2 from H2 and O2, is a 
relatively new process that is not without problems of its own, but which is under active 
development25.  Interestingly, recent research has shown the advantage of carrying out the direct 
synthesis of hydrogen peroxide in a methanol medium26. 
Very recent research shows that using a palladium catalyst in an acidic medium26b in which the 
acid functional groups or halogens are bound to a catalyst bed such as sulphated zirconia, or using 
a Pd-Au catalyst, improves the efficiency of hydrogen peroxide direct synthesis.  Recent research 
has focused on the adaptation of this system to a continuous-flow rather than a batch reactor.  A 
selectivity of 90% has been demonstrated with such a continuous reactor26c: as much as 90% of 
the reactant flux emerges as H2O2, and 10% as water.  Higher concentrations of H2O2 would require 
low-temperature distillation to remove unwanted water, or the solution could be used exactly as 
produced.  The hazard of using a hydrogen/oxygen gas mixture was avoided by using a large 
amount (80%) of carbon dioxide as the carrier gas.  As sanguine as the abstract of their article is, 
the text is more sobering, in that the observed selectivity declines with time after a brief startup 
interval.  This scheme must be regarded as being in the preliminary research stage, definitely not 
ready for use in a production plant.  Its suitability for space-based application is not yet 
demonstrated.  
Edwards, et al.26d of the University of Cardiff have found that directly synthesized H2O2 can be 
stabilized against further hydrogenation (reduction to H2O) driven by the very same catalysts used 
in the H2O2 synthesis.  Their technique is a simple acid pretreatment of the carbon support for the 
gold-palladium nanoparticle catalyst.  This treatment blocks the sites of the reduction reactions, 
giving high selectivity for peroxide synthesis.  
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10. Space-based direct synthesis of H2O2  
H2O2 synthesis from H2 and O2, which is required for space-based storable oxidizer production, is 
a new alternative to existing terrestrial practice for production of hydrogen peroxide.  Advances 
made in the pursuit of space-based direct synthesis will feed back into terrestrial H2O2 production, 
potentially accelerating the replacement of chlorine-based oxidizing and bleaching agents.  Of the 
many suggested processes for direct synthesis of hydrogen peroxide, the one that appears most 
promising for space-based use is an electrochemical cell.     
Recent fuel-cell research has been inspired by the automobile industry’s efforts to develop fuel-
cell powered vehicles as replacements for internal combustion engines.  Fuel cells oxidize a fuel 
such as hydrogen or hydrocarbons under controlled conditions to generate an electric current 
without the undesirable byproducts of normal combustion, such as partially oxygenated unburned 
hydrocarbons (aldehydes, ketones, carboxylic acids) and nitrogen oxides. 
The ideal fuel for fuel cell use is hydrogen.  The end product of the power fuel cell reaction is 
water.  However, the reactions in the fuel cell proceed in two stages: the first stage produces 
hydrogen peroxide, and the second converts all the H2O2 to water. For road vehicles, there is a 
strong incentive to maximize energy output by avoiding formation of H2O2. However, the same 
fuel cell technology could also be optimized for H2O2 production.  Research on this alternative is 
at an early stage. Professor David Schiffrin, director of Liverpool University’s Center for 
Nanoscale Science, undertook an investigation of optimizing hydrogen peroxide production, 
initially using quinones rather than platinum catalysts.  Schiffrin and his colleagues have a patent 
pending for co-generation of electricity and hydrogen peroxide27. Their experiments to date on 
electrode development have been very successful, but no attempt has been made to adapt these 
electrodes to a complete H2O2 production cell, let alone for space applications.  For use in space, 
it would also be desirable to avoid dependence on degradable catalysts (such as anthraquninone) 
that would require resupply from Earth. Schiffrin’s patent application specified the use of a 
platinum-group metal for the hydrogen oxidation electrode and “oxides of cobalt alloys”, carbon 
with attached anthraquinone derivatives, or “transition metal complexes ( e. g. cobalt porphyrin), 
gold, copper, mercury, or platinum” for the oxygen-reduction electrode.  As a side benefit, 
electricity produced by the process permits the chemical potential energy change of the cell 
reaction to benefit both hydrogen peroxide synthesis and energy production, thus recapturing part 
of the energy expended in making hydrogen and oxygen by water electrolysis.  This technology, 
although very promising as a route to efficient synthesis of H2O2, is still in the early stages of 
development and needs to be adapted to use in space, an important goal for Phase II. 
Their success to date does however give grounds for optimism that a simple and capable system 
may be attainable.  Unfortunately, Prof. Schiffrin is now retired and no longer maintains a 
laboratory.  Experimental facilities at the University of Arizona can continue this research. 
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11. Long-Term Storage of Hydrogen Peroxide 
Decomposition of H2O2:  Hydrogen peroxide spontaneously decomposes into water and oxygen 
with substantial release of heat, a trait that makes it valuable as a rocket monopropellant.  Its 
structure, HO-OH, is analogous to that of hydrazine, H2N-NH2, an even more powerful 
monopropellant that is much harder to make in space because of the low availability of nitrogen.   
The heat released upon decomposition of hydrogen peroxide at 298 oC is -98.21 kJ/mol.  The rate 
of decomposition of high-test peroxide (HTP; a name usually reserved for solutions with 90% 
purity or higher) depends on temperature, exposure to light, catalytic impurities, and exposure to 
some solid surfaces. 
Storage container materials: Many plastics and certain stainless steel alloys are useful containers 
for long-term storage of HTP.  One favored tank material for hydrogen peroxide storage is 1060 
aluminum alloy.  Teflon or Teflon-coated tanks are also very successful.   
Light:  Hydrogen peroxide is vulnerable to destruction by near UV in sunlight, and is for this 
reason stored in opaque containers.  Food-grade (35%), hair bleach (6%) and drugstore (3%) H2O2 
are sold in opaque containers or brown bottles to inhibit destruction by light. 
Base- and metal-catalyzed decomposition of H2O2: Alkaline solutions of H2O2 are degraded by 
exposure to hydroxide ion.  Strong acids are also detrimental; much practical experience shows 
that the optimum pH for H2O2 storage is about 6 (weakly acidic).  A wide variety of metal cations, 
including Ca2+, Mg2+, Al3+, and transition metal ions, also catalytically destroy H2O2.  Since the 
favored tank material is an aluminum alloy, it is essential to regulate the pH of the solution so as 
to minimize the dissolution of Al, not only to protect the tank from excessive corrosion and 
eventual failure, but also to protect the H2O2 in it from catalytic decomposition.  This requirement 
also mandates a near-neutral pH, since Al metal is dissolved in both strongly acidic (as Al3+) and 
strongly basic (as Al(OH)4-) solutions.  Catalytic degradation can be prevented by assuring that 
the peroxide stream is free of particulates, dissolved metals and sulfuric acid.   
Temperature:  Elevated temperatures accelerate the decomposition of H2O2 in any tank material.  
High-concentration H2O2, of 90 to 99% purity, with stannate stabilizer added (see below), has been 
stored successfully for many years in 1040 Al-alloy tanks, showing decomposition rates28 of about 
0.01%/year at 86oF (303 K), 0.1%/year at 151oF (339 K), and 1%/year at 212oF (373 K).  These 
measured rates define the activation energy for decomposition, which permits a calculation of the 
decomposition rate at lower temperatures such as might be applicable in a space environment.  Fig. 
5 shows that decomposition rates of 0.001%/year can be achieved at a temperature of about 37oF 
(3oC).   
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Fig. 5   Rate of decomposition of HTP H2O2 in Al-alloy tanks.  Experimental data above 300 K are used to calculate 
the activation energy for decomposition and extend the curve to lower temperatures.  The normal freezing point of 
HTP is -0.4 oC; however, because of the tendency for liquid H2O2 to supercool, the liquid can persist down to about -
40 oC, allowing the prediction that the actual H2O2 decomposition rate for the supercooled liquid may be as low as 
10-5 %/year at 233 K.  See Fig. 6 for context. 
 
A one-tonne tank load of high-purity H2O2 at 0 oC would then lose about 10 g of material per year, 
releasing about 5 g of oxygen gas.  Likewise, 100 tonnes of HTP at -40 oC would lose about the 
same amount of oxygen.  There seems to be little data on how much solid H2O2 gains in stability 
relative to the liquid: the freezing point of pure H2O2 is -0.4oC (31oF).  There is, however, a patent 
(U. S. Patent 3,480,557) on storage of H2O2 in the solid state using complex organic substrates, a 
technique unlikely to be of interest in space.  
Stannate preservative:  Addition of sodium or potassium stannate (Na,K)2Sn(OH)6 has a strong 
stabilizing effect on H2O2, in part by reacting with, complexing, and even precipitating metal 
stannates from solution and making them unavailable to react with H2O2.  US Patent 3383174A29 
is illustrative of one of many variants on the use of stannates at concentration levels of 0.001 to 
0.01% to stabilize high-purity peroxide.  The purpose of the higher concentrations is to protect 
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stored high-test peroxide against the effects of catalytic decomposition catalyzed by trace metal 
ions in the water used to dilute the peroxide for practical use, a factor absent in our proposed use.  
The mass of stannate required to stabilize 100 tonnes of 98% H2O2 destined for propellant use (not 
for dilution) is therefore on the order of 1 kg.   
Phosphates also find commercial use as stabilizers for peroxide.   
 
12. Effect of Peroxide Degradation on Propellant Performance 
Calculations performed on burning kerosene (jet fuel) with 98% H2O2 at 50 atmospheres chamber 
pressure show an Isp of 329 seconds28.  Using hydrogen peroxide stored for about 2 years30, after 
the concentration had dropped to 96%, the computed specific impulse was found to have dropped 
only about 0.6%, to 327 s.  The reason that the drop in performance was so small is that the small 
amount of additional water vapor made by H2O2 decomposition has a lower molecular weight than 
carbon dioxide, leading to an exhaust with a lower mean molecular weight and higher thermal 
velocity at any temperature.  The lowering of the molecular weight of the exhaust partially 
compensates for the lower oxygen content.  Thus slight (2%) degradation of the concentration of 
the oxidizer has only a very small (0.6%) effect on engine performance. 

 

13.  Freezing and Distillation Behavior of Hydrogen Peroxide 
As mentioned above, the freezing temperature of pure hydrogen peroxide is -0.4 oC, very similar 
to that of pure water.  The H2O2/H2O binary phase diagram shows a eutectic point at about -54 oC 
and 64% hydrogen peroxide, a concentration so low that serious performance degradation is 
incurred.  A representation of the H2O2/H2O equilibrium phase diagram on the pH2O2-pH2O plane 
is given in Fig. 6.  Each freezing-point line in the figure is the locus of coexistence between two 
phases, the liquid and the locally stable solid.  Cusps in the liquidus correspond to triple points in 
the H2O-H2O2 system. 
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 Fig. 6   Equilibrium phase diagram of the H2O2-H2O system on the p(H2O2)-p(H2O) plane.  The solid scalloped line 
is the freezing-point curve for aqueous H2O2 solutions; the upper right region of the diagram, that above the freezing 
point curve, is the solution stability field, within which (curved) lines of constant temperature (isotherms) and 
(straight) lines of equal solution concentration (isopleths) are shown.  The region below the freezing curve on the left 
side of the diagram is the stability field of pure solid H2O2; the region below the freezing curve at the bottom of the 
diagram is the stability field of water ice Ih.  A solid hydrate of hydrogen peroxide is stable in the small region at the 
lower left.  See text for further interpretation. 
 
The diagram shows that a 60% solution at 0 oC has a hydrogen peroxide partial pressure of 10 
N/m2 and a water vapor partial pressure of 180 N/m2, so the vapor has a water:peroxide ratio of 
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18:1, far higher than the ratio in the liquid (0.4:0.6, or 0.66). Thus removal of vapor (distillation) 
increases the concentration of H2O2 in the liquid.  Low-temperature (vacuum) distillation of the 
solution therefore provides a straightforward way to evolve the liquid toward pure-H2O2 
composition.  Alternatively, given a low level of artificial gravity (acceleration) it may also be 
desirable to take advantage of the two-phase region to freeze out pure H2O2 and separate it from 
residual liquid via flotation or filtration.   

Freezing of hydrogen peroxide, however, is dependent upon the presence of suitable nucleation 
sites, in the absence of which the liquid high-test peroxide (HTP) can be severely supercooled31, 
often remaining as a liquid down to -40 oC.  Thus pure peroxide, once made, can be stored as a 
liquid even far below its normal freezing point, at temperatures similar to the ambient temperatures 
on the surfaces of Near-Earth Asteroids, without incurring the handling complexities caused by 
freezing into an icy solid.  A further benefit is that the lower the storage temperature, the slower 
the rate of hydrogen peroxide decomposition.  By reference to Fig. 5, we see that extension of the 
decomposition rate curve into the supercooled liquid region (under the assumption of a constant 
enthalpy of activation) predicts that the rate of decomposition of liquid HTP at -40 oC is only 10-5 
%/year, fully 100 times slower than the rate at the normal freezing temperature.   
 

14. Raw Materials Requirements for Storable Propellant Synthesis 
The overall stoichiometry of synthesis of DME and H2O2 from H2O and CO2 is:  
 9 H2O + 2 CO2  6H2O2 + (CH3)2O. 
The 9:2 molar ratio of water to carbon dioxide implies a mass ratio of (9x18)/(2x44) = 1.84 tonnes 
of water per tonne of CO2; synthesis of 1000 tonnes of propellant requires 648 tonnes of water and 
352 tonnes of CO2.  
There is a stable and easily produced solid hydrate of carbon dioxide, water clathrate hydrate, that 
serves as a means of transporting both CO2 and water (see Fig. 4).  The hydrate provides 5.75 
water molecules per carbon dioxide molecule, somewhat more than the stoichiometric ratio of 
4.5:1 desired for propellant synthesis:  
 11.5H2O + 2CO2  2CO2.5.75H2O(s). 
Return of sufficient hydrate materials to make 1000 tonnes of propellant would require carrying 
an extra 141 tonnes of water beyond the 648 tonnes calculated above for propellant synthesis, 
necessitating a total mass return of 1141 tonnes.  The 141 tonnes of “extra” water can be used in 
any of a wide variety of ways, such as in life support, hydroponics, as an industrial reagent, and in 
electrolytic manufacture of LOX and LH2. To this total should be added the amount of water 
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needed by the propulsion system (water-based STP) to return the load to Earth orbit.  That amount 
is highly mission-dependent, and must be stored separately from the clathrate. 
Since water release is efficient at relative low calcining temperatures, and efficient CO2 release 
requires temperatures so high that SO2 is also produced abundantly, there is a strong incentive to 
seek propellant production schemes that use a high ratio of water to CO2.   The following table 
illustrates the availability of fuel/oxidizer pairs vs. the mole fraction of CO2 in the retrieved 
payload of asteroidal volatiles. 
Table 1. Potential fuel/oxidizer pairs compared to feedstock composition 
 Fuel Oxidizer Production reaction    Mole fraction CO2 
A H2    O2  2H2O  2H2 + O2      0  
STP   (H2O STP)  H2O        0 
B     H2O2 mono  2H2O  H2O2 + H2      0 
C CH4    H2O2  CO2 + 6H2O  CH4 + 4H2O2   0.143 
     feedstock  CO2 + 5.75 H2O  CO2.5.75H2O   0.148 
D CH3OH     H2O2  CO2 + 5H2O  CH3OH + 3H2O2   0.167 
E C2H6    H2O2  2CO2 + 10H2O  C2H6 + 7H2O2   0.167 
F DME    H2O2  2 CO2 + 9H2O  (CH3)2O + 6H2O2  0.182 
G C2H5OH H2O2  2 CO2 + 9H2O  C2H5OH + 6H2O2  0.182 
H C3H8    H2O2  3CO2 + 8H2O C3H8 + 4H2O2   0.273  
I CH4      O2  CO2 + 2H2O   CH4 + 2O2   0.333 
J CH3OH       O2  2CO2 + 4H2O  2CH3OH + 3O2   0.333  
K DME      O2  2 CO2 + 3H2O  (CH3)2O + 3O2   0.400 
L C2H6      O2  4CO2 + 6H2O  2C2H6 + 7O2   0.400 
M C2H5OH      O2  2CO2 + 3H2O  C2H5OH + 3O2   0.400 
N C3H8      O2  3CO2 + 4H2O C3H8 + 5O2   0.429 
 
It is evident from this table that there are five propellant-production schemes (C, D, E F and G) 
that have feedstock compositions that match that of the clathrate hydrate reasonably well, all of 
which involve the use of hydrogen peroxide as the oxidizer.  Of these, option C employs cryogenic 
methane (normal boiling point 112 K) and E involves the mild cryogen ethane (b. p. 184 K).  The 
storable fuel options are reduced to methanol and DME.   
 
Options A, STP and B do not depend on CO2 at all.  Options A and B employ water and solar 
electrical power (for electrolysis); STP employs water and concentrated direct solar heating.  
Assuming conversion of raw solar power into electricity with an efficiency of 25%, B is preferable 
to A for most purposes when carbon is not available.  The carbon-intensive fuels near the bottom 
of the list (I through N) are especially poor choices for manufacture from C asteroid volatiles: all 
also demand cryogenic LOX. 
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15.  DME/H2O2 Combustion  
Since the combustion of DME with hydrogen peroxide produces only carbon dioxide and water 
vapor as products, the stoichiometry of the combustion reaction is exactly the same as the synthesis 
reaction, requiring 6 moles of H2O2 per mole of DME burned.  The exhaust then has a mean 
molecular weight M of 22.7, compared to 30 to 31 for the combustion products from burning a 
long-chain hydrocarbon (kerosene) with LOX.  The high H:C ratio in the combustion products 
guarantees a lower exhaust molecular weight, which in turn guarantees a higher mean thermal 
speed for any temperature.  The H:C ratio in the DME fuel is 3:1 compared to 2.1±0.1:1 for long-
chain hydrocarbons (kerosene; paraffin) and 1.9 for diesel fuel.  The only fuels with a higher H:C 
ratio are the deep cryogen liquid hydrogen (∞) and the soft cryogen methane (4:1). Methanol (4:1), 
although it has a favorable hydrogen content, has a poorer heat of combustion because it is already 
50% by mass oxygen – initial calculations indicate however that this deficiency is compensated 
by being closer to the feedstock ratio then DME (see previous section). This is examined further 
in Section 17.  Ethane C2H6 (a soft cryogen) and ethanol CH3CH2OH also have H:C = 3:1, the 
same as DME.   
The heats of combustion of these materials (ΔHc) can be compared in the following table, which 
assumes the use of cryogenic LOX as the oxidizer for every fuel except DME and ethanol, for 
which high-grade hydrogen peroxide is assumed.  All numbers assume a stoichiometric 
fuel:oxidizer ratio.  The following table also gives the mean molecular weight M of the exhaust 
and a crude performance Figure of Merit (FoM) estimated from the ΔHc and molecular weight, 
based on Isp ~ vex ~ (ΔHc/M)0.5.  Isp numbers from a variety of published sources are included in 
the rightmost column.  Note that this FoM refers ONLY to performance as a propellant. 
Table 2.  Heats of combustion for assorted fuel/oxidizer pairs 

Fuel Oxidizer Heat of Combustion (HHV) 32 
(GJ/tonne) 

Molecular Weight of Exhaust, AMU 
FoM Isp (sec) 

Liquid Hydrogen LOX 134.0 18.0 2.81 390 
Liquid Methane LOX 52.4 26.7 1.44 362 
Liquid Ethane LOX 49.2 28.4 1.35 310 

Gasoline LOX 47.0 33 30.2 1.25 335 
Kerosene LOX 46.2 33 30.4 1.23 358 

Diesel Fuel LOX 45.0 33 30.6 1.21 300 
Methanol LOX 22.0 26.7 0.92 280? 

Dimethyl Ether (DME) HTP 43.8 22.7 1.18 300 (NOTE 1) 
Ethanol HTP 42.2 22.7 1.14 290 

Methanol HTP 31.9 22.3 1.20 261 
Ethylene HTP 70.5 23.2 1.74 ? 

NOTES: 
1. DME/HTP Isp predicted to be just higher than for Ethanol/HTP. 
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This table suggests that DME/H2O2 is reasonably competitive with most hydrocarbon/LOX 
systems.  If mild cryogens are considered, then methane or ethane with hydrogen peroxide would 
also be attractive options.  All H2O2 combinations are somewhat inferior to methane/LOX in 
performance; their advantage is that they are cryogen-free. 
 
16.  Schematic Processing System Architecture on an Asteroid 
The first mass-retrieval mission should be devoted to relatively low-temperature extraction of 
water for the STP system for the return of CO2 hydrate and a mass of raw (unheated) asteroidal 
material to a processing facility in Earth orbit.  (Confirming the feasibility of combined water and 
CO2 harvesting on the first missions is a critical goal of the Phase II research.)  The equipment that 
must be present on the asteroid includes a large solar collector to provide thermal energy for baking 
the asteroid material to release water-rich volatiles.  Separation of the volatiles from residual solids 
can be accomplished efficiently by the same means widely used on Earth, a “cyclone” unit that 
spins the mixture to centrifuge the dust out of the gas and a “dust pump” to draw off the exhausted 
solids, which should be bagged and left on the asteroid for future exploitation for their content of 
residual volatiles and metals.  The raw material returned to Earth orbit will be used to optimize the 
heating and processing techniques for future use on the asteroid. 
For all later missions, stronger heating (following time/temperature parameters determined from 
experiments carried out in Earth orbit on the asteroidal solids returned in the first mission) will be 
used to drive off a larger mass of gas.  This evolved gas, composed mainly of carbon dioxide and 
water vapor, is cooled to condense these materials as the carbon dioxide clathrate hydrate for return 
to near-Earth space for final processing into propellants, leaving a residual incondensable gas of 
nitrogen, carbon monoxide, and probably sulfur dioxide to be vented overboard.  Supplemental 
liquid water is condensed into a separate tank for use as the working fluid in a Solar Thermal 
Propulsion engine for the return to near-Earth space. 
The electric power for the pumps, valves, and cyclone must be supplied by a small photovoltaic 
array sized by the need to deliver sufficient power at the aphelion of the asteroid, where most of 
this volatile-extraction processing must occur.  An electrolysis unit, if required, would be 
conceptually patterned after the ISS system: it and the other pieces of equipment mentioned (and 
the ISS Sabatier reactor) function independent of gravity.  It would, however, be desirable to design 
the system architecture so that electrolysis and all other forms of processing could be relegated to 
Earth orbit, not used on the asteroid. On the target asteroid, after landing, anchoring, and 
deployment of the solar collector: 
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Step A uses an electromagnetic regolith “pump” to deliver a stream of loose, fine regolith through 
an airlock into a calciner tube which runs the length of a trough in an elongated solar collector 
with approximately parabolic section.  In Step B, the material is heated as it transits the length of 
the calciner trough and releases volatiles, the volatiles and tailings being separated by passage 
through a cyclone which expels dust into a reservoir and admits gaseous products, largely water 
vapor and carbon dioxide, through a heat exchanger (which preheats the solids entering Step A) 
into a storage volume or “water bag” which, in Step C, rejects the heat of condensation into space.  
Somewhat impure water is accumulated in the bag in step C for use as the working fluid in a Solar 
Thermal Propulsion system to return the payload to Earth orbit.  Lower temperatures are used in 
step D to condense CO2 clathrate hydrate into a separate “ice bag” for transport to Earth as the 
main payload. The first processing stage, on the asteroid, has been modeled in detail for us by Sam 
Spencer, a DSI collaborator, as follows.  This model, one of several produced by Spencer, deals 
with the problem of sulfur dioxide release at higher calcining temperatures by the expedient of 
using only lower calcining temperatures, which limits CO2 production as well as preventing 
massive release of SO2.  (An alternative architecture involving higher calciner temperatures, 
efficient CO2 production, transport of both water and carbon dioxide to HEO, and SO2 cleanup on 
the asteroid has also been studied.  A decision between these options awaits laboratory testing in 
Phase II.)  
A detailed flow chart for the on-asteroid operations, developed by DSI collaborator Sam Spencer, 
shows the complete plan.  “Area 1” is the surface of the asteroid.   

A.  Acquisition and 
loading of regolith 
(after oversize 
removal) into solar 
calciner 

B.  Calcining of raw 
asteroid material 
with cyclone 
rejection of solid 
tailings 

C.  Condensation 
of water for use 
as STP 
propellant for 
return trip 

D.  Condensation 
of water and 
carbon dioxide 
for transport to 
Earth orbit 
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Fig. 7  Analysis of at-the-asteroid processing identified 13 major phases.  The estimates for mass, power, and 
throughput will be greatly refined during Phase II work. 
 

 Area 1 –Asteroid Mining 
o Water supplied at HEEO: 

 The basis for design is the supply of the maximum mass of water and CO2 
at HEEO – after transport, depending on the selected asteroid and return 
fuel requirements. Initial calculations indicate this may vary from 30 – 120 
tonnes of water supplied to HEEO, constrained by the mass that can be 
launched to a target on a Falcon Heavy;  however significant additional 
optimization is still to be conducted. 

o Material Handling: 
 Asteroid particle size assumed to be as defined in literature of 

approximately d50 = 50 µm, d90 = 100 µm, d100 = 10,000 µm. Anything 
larger then this will be rejected at the excavator stage. 

o Energy Production / Removal: 
 Electrical energy supplied by solar photovoltaic cells with a solar cell 

efficiency of 25% and system efficiency of 80% 
 Thermal energy supplied by Concentrated Solar Radiation via Parabolic 

Mirrors with a mirror efficiency of 60% and a system efficiency of 80%. 
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An additional efficiency of 75% is assumed for transfer of energy to final 
user. 

 Energy removal is via ammonia coolant with radiative loss to space. 
 Incident solar radiation is calculated at the furthest distance from the sun, 

and therefore varies from one target asteroid to another. 
o Unit 0060 – First Fill Nitrogen: 

 A small amount of nitrogen (order of kg) will be bought from Earth for the 
purpose of pressurizing the system before use. 

o Unit 0100 – Excavation: 
 Excavation using external Electromagnetic Regolith Extractors (ERE), with 

internal gas assistance for solid transfer as required. 
o Unit 0200 – Mixing Chamber: 

 The solid:gas ratio for material transport is controlled to around 200-300. 
Experimental test work at zero gravity (by others) indicate that ratios up to 
6000:1 are possible, however DSI would like to use a larger ratio to 
minimize risk of blockage. 

 A pressure of 50 kPa will be used for all processing sections, supplied via 
gas compressor and maintained by inert-gas recycling. 

o Unit 0350 – Mineral Sizer: 
 This equipment will act as a safety device for the rest of the equipment, 

ensuring that oversize particles will be crushed and agglomerated material 
will be broken up. This equipment can be placed in any orientation, and will 
use pneumatic transfer to ensure transport through the sizer. 

 The operability of this equipment will need to be tested before use. 
o Unit 0400 – Calciner: 

 Operating temperature of 1000K required to optimize CO2 release at 
asteroid. Associated SO2 release will be managed. 

 Residence time not yet defined, however due to small material size this is 
expected to measure in minutes – further testwork required. 

o Unit 0500 – Cyclone Separation: 
 Cyclones work in zero gravity, so gas/solid separation should work well. 

o Unit 0550 – Anhydrous Solids Capture: 
 Solids are captured and valuable gases removed before discharge back to 

asteroid. Gas losses, largely via adsorption, are expected at 1%w/w. 
o Unit 0600 – Heat Recovery: 

 A simple heat exchanger (“recuperator”) will recover excess heat in the 
gases and heat the incoming solids. 

o Unit 0900 – Vapor Cooling: 
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 The high level of water vapor in the gas ensures easier recovery of liquid 
water from cooling, using ammonia heat removal systems as previously 
discussed. 

o Unit 0950 – Gas Compressor: 
 A simple gas compressor to provide pressure to the system. 

o Unit 0980 – Reverse Osmosis or comparable technology: 
 Water treatment to remove any dissolved impurities from the water. 

o Unit 0990 – Gas Transfer Membrane: 
 Further water treatment to remove a majority of the dissolved CO2 from the 

water. 
o Unit 1600 – Gas Purge: 

 A removal system for any additional non-condensable gases (N2, CO, etc.) 
that build up in the system during operation.  These gases are expected to 
be abundant enough to exceed makeup requirements for losses. 

 
The next step is transport of CO2 and water to a processing facility in HEEO.  We have considered 
the option of returning some solid asteroid material (either heated or unheated) for process 
development research (such as metals extraction): “Area 2” refers to the transportation step.  

 Area 2A – Transportation to Earth HEEO: 
o Thermal energy to heat water for use in Solar Thermal Propulsion (STP) as 

previously discussed. Mass of water and raw or anhydrous solids for 
experimentation are taken into account, along with all processing equipment. 

 Area 2B – Transportation to Earth: 
o Heat water in a Solar Thermal Propulsion (STP) as previously discussed. Mass of 

first-fill N2 taken into account, along with all processing equipment. 
 
The task of manufacturing DME and HTP is relegated to a facility in Earth orbit to minimize the 
complexity of the autonomous equipment landed on the asteroid and to take advantage of the 
higher solar flux at 1 AU.  Sulfur management would logically be done at the asteroid. This 
removal must precede the fuel production step to avoid poisoning the catalysts used in DME 
synthesis.     
 
17.  Schematic Processing System Architecture in Earth Orbit 
The functions of the processing facility are to manufacture, store, and dispense propellant to all 
outbound missions, including return missions to the asteroids from which further extraction will 
be attempted, manned and unmanned missions to the Moon, and manned missions to the Mars 
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system.  The orbital parameters of the facility must be compatible with access from an asteroid 
return vehicle newly arrived in the Earth-Moon system and to (and from) LEO, with perigee high 
enough to avoid prolonged exposure to van Allen Belt radiation.  A Moon-resonant orbit would 
also be desirable.  All these factors suggest Highly Eccentric Earth Orbit (HEEO) as the preferred 
location, in accord with the arguments presented many years ago by Benton C. Clark. 
From the processing facility, an apogee burn can be used to drop the perigee of a departing 
spacecraft to as low an altitude as practical to take full advantage of executing escape burns deep 
in Earth’s potential well (the Oberth effect).  HEEO is also very desirable because it is close to 
escape velocity, and also because it facilitates dropping supplies into LEO or GTO via repeated 
mild aerobraking passes.  Supplying storable propellants to LEO for station-keeping, attitude 
control, and reboost and for injection of outgoing payloads into GTO and GEO, or into rendezvous 
transfer orbits to the processing/refueling facility, are all potential major markets.  The use of a 
HEEO with a Moon-resonant period permits integrating it into Moon-bound traffic flow, as well 
as facilitating lunar swingbys for outbound missions.  Note that this is essentially an incarnation 
of NASA’s plans for space-basing from the 1990 era. Great numbers of relevant NASA 
publications can be found by Googling NASA “space basing”. 
The fuel factory/depot would also become the logical place for production of cryogenic propellants 
as demand arises.  Cryogenics are outside the scope of this work. 
The feedstock for the propellant manufacturing scheme is CO2 clathrate (or condensed water and 
CO2). Upon arrival at the processing facility in Earth orbit, gentle heating of the clathrate hydrate 
to release CO2 gas from liquid water (at approximately 275 K), allowing good separation of the 
two.  Alternatively, CO2 and H2O could be carried separately as their pure ices.  Passive thermal 
control should suffice for this purpose.  In order to manufacture storable fuels and oxidizer, it is 
essential that a large quantity of water be electrolyzed into gaseous hydrogen and oxygen.  It is 
highly desirable that liquefaction of these gases be avoided, and that the system be designed in 
such a way that there will be no need to accumulate large masses (volumes) of these gases.  For 
that reason, a continuous-flow processing system is far more attractive than batch processing. This 
material is for use as the feedstock for manufacture of storable rocket propellants in an appropriate 
Earth orbit processing facility.  This facility should be in an orbit chosen for relative ease of access 
to and from Earth, the Moon, Low Earth Orbit, and Geosynchronous Orbit, such as a Moon-
resonant Highly Eccentric Earth Orbit or a lunar libration point.  Some mass of completely 
unprocessed regolith should also be returned for use as scientific samples and as experimental 
feedstock for further development and refinement of processing techniques.  Notionally, we 
choose to assume a payload of 100 tonnes of clathrate and 1 tonne of regolith.  Depending on the 
choice of asteroid, 50-100 tonnes of H2O may be required as the SPS propellant for the return trip.  
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Some of the water is electrolyzed to release hydrogen and oxygen gases, which are used directly 
(not stored cryogenically) in the ensuing process steps to manufacture storable fuel and oxidizer.  
Schematically,  
 
 
 
 
Step E involves warming the hydrate to release the CO2 as a gas and leave liquid water, and step 
F is essential for both fuel and oxidizer production.   
As discussed earlier, if SO2 removal at asteroid is not successful a small but poorly known fraction 
of the oxygen produced by electrolysis of water could be used to oxidize any gaseous sulfur 
compounds to SO3, which can be removed by a wet scrubber, another familiar terrestrial mineral-
industry technology.  This oxidation process would also destroy any residual traces of ammonia 
and produce molecular nitrogen.  The sulfuric acid produced in the scrubber is a valuable 
commodity that must be stored for future use, since the availability of sulfuric acid enables a wide 
range of mineral processing schemes.  It is also an appealing idea to stockpile the nitrogen gas for 
immediate use as a background recirculating gas in the processor, as well as to allow future use as 
a fire suppressant in habitats and as a source of hydroponic nutrients.   
However, the overwhelming majority of the electrolysis products are dedicated to the hydrogen 
reduction of CO2 to manufacture methanol and dimethyl ether and to the manufacture of H2O2 
from hydrogen and oxygen.  
After delivery to HEEO the more complicated processing stage, the manufacture of storable liquid 
fuel and oxidize, will occur. 
The HEEO processing activities (Area 3) have been modeled by DSI collaborator Sam Spencer in 
considerable detail, as the following flow chart illustrates.  The scenario presented here avoids 
sulfur dioxide production at the asteroid (and hence produces limited CO2 there) by keeping 
calciner temperatures low at the asteroid and transporting asteroidal solids to HEEO for roasting 
there.  This is one of many alternatives studied to date, and reflects the highest complexity of the 
HEEO processing hardware to illustrate how several of the problems that may arise (no S removal 
at the asteroid; inability to get high H2+CO2 conversion to DME) could be solved. 

E. Heating of 
the clathrate 
and separation 
of CO2 and H2O 

F. Electrolysis 
of water to 
make gaseous 
oxygen and 
hydrogen 

H. Catalytic 
reduction of CO 
with hydrogen to 
make MeOH or 
DME 

I. Fuel-cell 
reaction of H2 
and O2 to make 
hydrogen 
peroxide 

G. Solid Oxide 
Electrolysis of 
CO2 to CO and O2 
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Fig. 8  The synthesis of HTP and a fuel (TBD) will be conducted in Earth orbit.   
 

 Area 3 – Processing Station at Earth HEEO: 
o Unit 5010 – Clathrate Heater: 

 The clathrate can be heated to release CO2 and H2O, with re-condensation 
of H2O conducted to recover reasonably clean water (with some dissolved 
CO2) and a clean CO2 gas stream. 

o Unit 4950 – Gas Compressor: 
 A simple gas compressor to provide pressure to the system. 

o Unit 5000 – PEM Electrolyzer: 
 To produce H2 and O2 

o Unit 5100 – CO Synthesis: 
 A Solid Oxide Electrolyzer (SOE) can be used to convert CO2 to CO and 

O2 (analogue testing completed by NASA, to be tested in-situ on 2020 Mars 
mission) 

o Unit 5300 – DME / MeOH Synthesis: 
 CO and H2 can be used to produce Dimethyl Ether (DME) or Methanol via 

direct synthesis 
o Unit 5400 – H2O2 Synthesis: 

 H2O2 can be produced from the available H2 and O2 gases using direct 
synthesis 
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Combination Sabatier/SOE units may be worthwhile and have been examined and tested by 
various private enterprises, one example is from Paragon Space Development Corporation: 
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009943.pdf. 
 
The results from this analysis and process simulation can be seen identified below  All 
calculations are based on asteroid 2009 HC orbit and assumed CI asteroid composition. 
 
Table 3.  Analysis of producing different fuels for use with HTP. 

Description Units 
Case F  
(DME-
H2O2) 

[regolith to 
HEEO] 

Case G  
(Clathrate-

DME-
H2O2) 

Case H  
(Clathrate-

Ethanol-
H2O2) 

Case I  
(Clathrate-
Methanol-

H2O2) 

Case J  
(Clathrate-
Ethylene-

H2O2) 
Water delivered to HEEO t/period 30.0t 8.0t 8.0t 8.0t 8.0t 
Final Water available at HEEO 
after processing t/period 0.5t 0.2t 0.5t 0.2t 4.0t 
Fuel Production at HEEO, as 
GJ of combustion with 
specified Oxidizer 

GJ/period 79GJ 342GJ 341GJ 384GJ 383GJ 
Final CO2 available at HEEO 
after processing t/period 4.5t 2.4t 1.0t 0.8t 0.2t 
Energy Requirements            
MAX Thermal Energy (limit = 
100kW) kW 98 kW 92 kW 92 kW 92 kW 92 kW 
Solar Mirror Area m² 149 m² 140 m² 140 m² 140 m² 140 m² 
MAX Electrical Energy (limit 
= 40kW) kW 22 kW 26 kW 26 kW 26 kW 26 kW 
Photovoltaic Cell Area m² 80 m² 93 m² 93 m² 93 m² 93 m² 
MAX Energy Removal  kW 59 kW 106 kW 106 kW 106 kW 106 kW 
Radiator Area m² 179 m² 321 m² 321 m² 321 m² 321 m² 
Propulsion            
Thrust Time from Asteroid to 
HEEO with Cargo (includes 
10% time margin, limit = 50-
70%) 

% of total 
time 69% 49% 49% 49% 49% 

Specific Thrust (includes 10% 
time margin) mN/kW 369 

mN/kW 
369 

mN/kW 
369 

mN/kW 
369 

mN/kW 
369 

mN/kW 
TOTAL Weight of Harvestor 
to Asteroid  (limit = 15.6t) t 13.7 t 13.7 t 13.7 t 13.7 t 13.7 t 
TOTAL Weight of Harvestor 
to HEEO t 361 t 212 t 212 t 212 t 212 t 

 
These results indicate the following: 

- The effectiveness of clathrate in maximizing fuel production at HEEO for the same 
transport energy from asteroid 
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- Even though Methanol has a lower heat of combustion (see Section 15) as higher 
tonnages are produced the overall energy for propulsion available is greater than for 
DME/Ethanol. 
 

 
18.  Hydrogen peroxide as a monopropellant 
Although the main thrust of this study is to assess the coproduction of HTP and DME as storable 
bipropellants, it is clear that HTP alone can be used as a storable monopropellant providing a 
specific impulse of about 160 seconds.  HTP has the added virtue that it is far safer to handle than 
hydrazine or its derivatives. 
Since HTP synthesis requires only water as a starting material, it may be manufactured in Earth 
orbit without any requirement for carbon dioxide retrieval.  HTP would be a very simple and useful 
propellant for small spacecraft.   
 
19.  Applications of this Propellant Manufacturing Scheme:          the Mars System and the Moon  
 
Mars:  Proposed schemes for the manufacture of propellants on the surface of Mars make use of 
local atmospheric CO2, which is reacted with hydrogen imported from Earth to manufacture 
methane via the Sabatier process.  However, fully half the surface area of Mars carries a permafrost 
layer that is rich in water.  The use of local water and CO2 removes the necessity for importation 
of the deep cryogen liquid hydrogen, which involves many months of refrigerated storage of 
voluminous and heavily insulated liquid hydrogen tanks in space en route to Mars.  The propellant 
production scheme we propose here requires only CO2, water, and power.  Once installed on Mars, 
it can function autonomously, continuing to manufacture propellant and oxidizer without cryogens 
or any further resupply from Earth. 
Phobos and Deimos:  The two Martian moons are of spectral type D, suggestive of short-period 
comet nuclei, and consistent with the carbonaceous Tagish Lake meteorite, but without evidence 
of a water signature in the 3μm region.  A plausible explanation is that Ph/D were captured as 
volatile-rich bodies similar to comet nuclei, but aeons of collisional shock heating and reaccretion 
of the heated ejecta has led to severe depletion of volatiles such as water in the regoliths of these 
bodies.  The steep gravitational potential gradient in the vicinity of the orbits of Ph/D favors 
efficient reaccretion of ejecta from orbiting debris bands, a phenomenon of negligible importance 
for asteroids.  The interiors of both bodies, protected from shock heating, may still be volatile-rich, 
but present data do not allow any firm conclusions.  If an exploratory mission discovers strong 
evidence for a water-bearing interior in either body, both would become credible locations for 
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storable propellant production.  Even in the absence of spectral evidence for water, involatile 
organic polymers and magnetite very likely coexist in the surface regions of Ph/D.  Strong heating 
of this assemblage would release carbon dioxide, water vapor, and nitrogen.  The presence of 3 
wt% organic polymer implies about 0.3 % H, which upon oxidation by magnetite would generate 
2.7% water. The importance of Mars missions in current long-range planning suggests a potential 
high importance for resource evaluation and extraction missions to these satellites. 
Moon:  Present techniques for detecting volatiles in the lunar polar regions are appropriate for 
detection of hydrogen compounds but insensitive to carbon dioxide.  Nonetheless, since the 
volatiles in the lunar polar deposits are derived from cometary and asteroidal impactors, it is a 
virtual certainty that CO2 will be an important constituent, probably the second most abundant 
compound in the ice deposits.  If some means of mining and separating lunar polar ice can be 
devised and made to function efficiently under the extremely hostile local conditions (temperatures 
close to 50 K; total darkness; extremely hard-frozen permafrost; ubiquitous highly abrasive glassy 
shards in the regolith), then the two essential ingredients for in-space storable propellant 
manufacture would be available.  Launches from the lunar surface to Low Lunar Orbit (LLO) and 
to the lunar Lagrange points would be possible without any reliance on either propellant resupply 
from Earth or on production, storage, and refrigeration of cryogens. 
 
20.  Mission Opportunities for Use of Storable          Space-based Propellants 
 
Several transportation elements come together to enable delivery of propellant to customers in 
various Earth-orbit destinations from resources extracted from NEAs, and those elements are 
described here.  
First, the Harvestor spacecraft will transport resources to Earth’s vicinity from a NEA using STP 
with water, processed from a portion of the resources extracted from the NEA, as propellant. 
Transportation of the Harvestor spacecraft from HEEO to NEA, carrying excavation and water 
extraction equipment, is also part of the overall scenario. But it is a much smaller and less 
constraining part of the picture, and isn’t explicitly described in this section, except briefly in 
Section 20.4. 
Second, the Harvestor is captured into the Earth orbit in which the HEEO Processing Facility 
resides. The current baseline is capture via a single lunar swingby.  
Third, a HEEO is selected for the Processing and Storage Facility that is accessible from a wide 
enough range of NEA sources, is accessible to key customer destinations in Earth orbit, and is 
adequately stable over time under influences such as lunar and solar perturbation.  
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Fourth, transportation to customer destinations in Earth orbit. Destinations considered thus far are 
LEO (including staging for Mars missions), GTO, GEO, and direct injection to Mars or other 
heliocentric destinations from the HEEO Facility orbit or from other HEEO staging orbits. 
20.1 Transportation from NEAs to Earth’s vicinity. 
Most of the storable propellants for customer use are best processed at the HEEO Facility, as 
described in this report. However, propellant for use in transportation from the NEA to Earth must 
be produced while the Harvestor spacecraft is still at the NEA, and the process must thus be less 
complex and energy-intensive than those envisioned for HEEO. STP utilizing water produced at 
the NEA has been selected, with an operating temperature high enough to provide a propulsive Isp 
of 200 seconds. Though some of the propellant products described herein have higher performance 
in terms of Isp, the system currently selected for transportation from the NEA to Earth nevertheless 
delivers to the HEEO Facility a sizable fraction of the payload extracted at the NEA. Payload 
fraction delivered to HEEO also has a dependence on the thrust level available, with a stronger 
dependence on this parameter for NEA sources that have more eccentric orbits, and thus 
significantly lower power and thrust available near aphelion. Follow-on analysis will optimize 
such parameters as thrust level and operating temperature for the STP to maximize the payload 
fraction delivered to HEEO for as wide a range of NEA sources as possible. A possible outcome 
is that such parameters may need to be tailored (within limits) for each NEA mission opportunity. 
Two NEAs were examined, from a mission analysis perspective, for this study. It is expected that, 
with further analysis, many targets that yield greater mass delivered to HEEO (as a proportion of 
that departing from the NEA) will be identified. But these two serve to identify a number of issues 
pertaining to the wider class of targets that each represents. One of them, 2009 HC, exemplifies 
NEAs with semimajor axis close to that of Earth and fairly low eccentricity, so that available power 
and thrust remain near their 1 AU levels. The propulsive requirements are relatively benign during 
the mission opportunity shown but, due to the long synodic period relative to Earth, the favorable 
“season” for visitation by Harvestor and possible pre-cursors is fairly short, with many years 
between good phasing conditions. Thus the prospect of repeated visits, with possible placement of 
infrastructure at the NEA to support multiple visits, is less viable than for other classes of NEA. 
The other NEA examined, 1998 KY26, has somewhat greater semimajor axis and eccentricity. It 
has correspondingly greater propulsive requirements for delivery to HEEO and, with aphelion 
close to 1.5 AU, lower power and thrust availability in that region of its orbit drive the desirability 
for higher thrust levels (than for 2009 HC) so that most of the orbit changing can be effected while 
the spacecraft is closer to 1 AU. The lower synodic period with Earth, though, means this is a 
better candidate for repeated visits, with possible infrastructure emplacement. These two examples 
span an important range of NEA target orbital characteristics, but the examination will be 
expanded in follow-on analysis. Both of these NEAs also have heliocentric inclination less than 
4o. As discussed in Section 20.2, this inclination may be a practical limit in scenarios where capture 
to HEEO via lunar swingby is utilized. 
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JPL’s MALTO (Mission-Analysis Low-Thrust Optimization) software was used to model the STP 
system for the heliocentric return trajectory from the NEA to Earth’s vicinity. For 2009 HC it is 
instructive to show the ballistic trajectory that served as a starting point. Figure 9 shows the two-
point boundary value solution (Lambert’s Problem) for dates given by the NASA Ames’ 
Trajectory Browser utility to minimize total ΔV. It is seen that an impulsive ΔV at the asteroid of 
110 m/s suffices to initiate the transfer that reaches Earth on the specified date. Corresponding 
modeling of the STP system shows that under 15 tonnes of propellant is used, over about 50 days, 
to push away from the asteroid and establish a trajectory reaching Earth with no further propellant 
usage, such that 94% of the departing payload is delivered to Earth’s vicinity. The problem is that 
the Earth-approach V∞ is too high, 3.66 km/s, to allow capture at Earth. When the Earth-approach 
V∞ is constrained to a lower magnitude, then it is seen in Figure 10 that the vast majority of 
propellant is used to reduce the Earth-approach V∞ to that constrained level. Here the V∞ 
magnitude is limited to 1.5 km/s, which represents the most that can likely be removed through 
lunar swingby, per the discussion of Section 20.2. But that results in only 27% of the initial 
propellant load being delivered to Earth’s vicinity. 
Figure 11 depicts the modeling, using MALTO, of the Harvestor spacecraft returning from 1998 
KY26. As in Figure 10, return from 2009 HC, the Earth-approach V-infinity is constrained to be 
reduced to 1.5 km/s, which results in most of the propellant payload being used for this purpose 
during the transfer. As discussed above the greater aphelion of this NEA target and transfer orbit 
means that much less power and thrust are available at those distances. The optimal trajectory 
thereby concentrates much of the orbit adjustment to the period immediately preceding Earth 
approach (i.e., near 1 AU). When the maximum thrust level was set to half the level used in the 
scenario of Figure 11, then thrusting was required during the entire transfer orbit (including 
portions where it was likely fairly ineffective) and the payload fraction returned to Earth vicinity 
was significantly lower than that shown here.  
Although increase of the STP Isp beyond that used here of 200 seconds may not be practical due 
to temperature limitations, these results indicate that appropriate sizing of the power and thrust 
levels will be important for being able to return acceptable fractions of the payload from a 
sufficiently wide range of NEA targets. 
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 Fig. 9  Ballistic Trajectory between 2009 HC and Earth. 
 

 Fig. 10  STP transfer between 2009 HC and Earth. Isp = 200 s, Thrust = 45N @ 1 AU 
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Fig. 11  STP transfer between 1998 KY26 and Earth. Isp = 200 s, Thrust = 80N @ 1 AU 
 
20.2 Capture and delivery to HEEO Processing Facility orbit via single lunar swingby. 
Though the modeling shown in the section above shows a large portion of the payload being 
expended to reduce the V∞ approaching Earth to lower levels, the returned payload would be far 
smaller still if the STP system were required to reduce V-infinity all the way to zero, or yet further 
to a negative C3 (i.e., capture by Earth; C3 = Vinf2). Thankfully, the presence of Earth’s Moon 
provides a mechanism, though limited, for effecting such reduction without propellant 
expenditure.  
Other, simpler, mechanisms also exist for capture into Earth orbit including propulsive braking 
close to the Earth that takes advantage of the multiplying benefit of the Oberth effect, and also 
aerocapture into Earth orbit. Propulsive braking, utilizing the Oberth effect, must be conducted 
while the spacecraft is very close to Earth, and at the speeds involved this means the maneuver 
must be performed within tens of minutes around perigee. Given the high mass and low thrust 
available this is impractical. Aerocapture utilizes a passage through the Earth’s upper atmosphere 
(around 100 km altitude TBC) to lose enough energy to be captured into Earth orbit in a single 
such passage through aerodynamic drag. A single passage is all you get else you escape again into 
heliocentric space. But for the amount of energy to be shed, protection of the payload with an 
aeroshell and/or other mass increases for structural and thermal protection, will be necessary. 
Aeroshells may be constructed from asteroid material, and the material thereof will itself be 
valuable in space. Aeroshells are thus very much a part of a robust and mature space resources 
economy, but in the early stages addressed in this scenario represent an unneeded complexity and 
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risk factor. Also, aerocapture may be untenable politically due to the risk to the Earth, whether real 
or perceived, of passing large masses through the Earth’s upper atmosphere. It should be noted 
that while aerocapture is not advocated for this early space resource utilization scenario 
aerobraking, as a facilitator of delivery of processed propellants to lower orbits, is advocated as 
described in Section 20.4. Aerobraking is distinguished from aerocapture by upper atmospheric 
passes for energy reduction after the spacecraft has been captured into Earth orbit. Since the 
spacecraft is already captured, aerobraking passes can be arbitrarily gentle, i.e., little or no mass 
added for structural or thermal protection by breaking the energy reduction up into multiple perigee 
passes. That, however, comes at the expense of added mission duration. 
Figure 12 depicts the modeling of the capture from heliocentric space into HEEO via lunar 
swingby. AGI’s STK software (Systems ToolKit, formerly Satellite ToolKit) was used for this 
modeling and targeting. A leading-edge lunar swingby was targeted to maximize the Earth-
approach V-infinity that is removed by the swingby, without being specific to a particular asteroid 
starting point. The swingby targeting described below resulted in a maximum approach V-infinity 
of 1.53 km/s (C3= +2.34 km^2/s^2) that was captured to the prescribed HEEO. The heliocentric 
approach orbit had a very low inclination, though, of about 0.1 degrees. Asteroid-specific approach 

Fig. 12.  Lunar swingby trajectory. The returning spacecraft enters the frame from the bottom left (white line) 
before passing ahead of the Moon (violet then green and blue lines) to swing into a HEEO with apparently 

reasonable access to the GEO belt, and outgoing NASA missions to Mars and the outerplanets.   
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trajectories (individually and as classes of asteroid orbit), and the conditions and limits these place 
on the swingby benefit, will be developed further in Phase II. The spacecraft approaches the 
leading edge of the Moon from the Earthward side, and the perilune is constrained to be no lower 
than 100 km above the Moon’s surface. The swingby conditions are adjusted to achieve two 
conditions at the first post-swingby apogee. At first apogee these conditions are that the distance 
from Earth is 1.0 Mkm (or about C3= -0.8 km^2/s^2) and that apogee coincides with crossing of 
the Earth’s equatorial plane. The latter condition facilitates use of a maneuver at apogee to rotate 
the spacecraft orbit plane into the Earth’s equatorial plane, since that is the currently desired plane 
for the HEEO Facility. The apogee maneuver is also simultaneously used to change perigee to any 
desired value. The resulting HEEO has low perigee and very high apogee; to establish the current 
baseline HEEO Facility orbit a maneuver of 153 m/s at the first apogee after the lunar swingby 
was applied to both rotate the orbit inclination into the equatorial plane, and to raise perigee from 
722 km to 36086 km (GEO +300 km) altitude. Though this maneuver is on the large side for this 
heavily-laden low-thrust spacecraft, the velocity near this apogee is low enough that most of the 
thrusting can be concentrated near apogee where it is most effective. A maneuver at the following 
perigee of 27 m/s then lowers apogee so that a period of 27.3 days is established for 1:1 resonance 
with the Moon’s orbit. The two-body state of the orbit at this perigee is then taken to be that of the 
HEEO Facility orbit, for purpose of the transfer calculations for various propellant customer 
destinations shown in Section 20.4. 
As noted above, the lunar swingby modeled here is not specific to the approach trajectory from a 
particular NEA target. There may be other approach geometries that result in capture into favorable 
(but different) HEEO Facility orbits, and many other approach geometries for which lunar swingby 
capture doesn’t work well at all. One determining factor is the Sun-Earth-Moon angle (or lunar 
phase) at the time that the Harvestor approaches the Earth-Moon system. The Earth-approach date 
that is optimal for the heliocentric transfer (as determined here by MALTO) may not have good 
geometry for lunar swingby capture. One may have to change the Earth-approach date by plus or 
minus half a lunar period (+/- 14 days) to change the swingby conditions to ones that are usable, 
and that will come at some cost of some reduction of optimality of the heliocentric portion. For 
NEA targets with very low inclination, that change in Earth-approach date can be made with little 
penalty. For targets with higher inclinations, and modeling thus far suggest 4 degrees may be an 
upper bound, shifting the Earth-approach date comes with greater penalty. Besides inflexibility in 
shifting the Earth-approach date, another factor working against high inclination approaches is that 
lunar swingby capture is most effective (allows the most energy reduction) when conducted close 
to the Earth-Moon orbit plane (which is about 9 degrees from the ecliptic plane). Thus, for higher 
inclination NEAs, some of the payload may also be needed to be expended to reduce the z-
component of the approach V-infinity, and not just the total magnitude of V-infinity. Despite these 
complexities and limitations, the alternative of using payload expenditure all the way to capture 
instead of lunar swingby, will usually result in less payload delivered to the HEEO Facility orbit. 
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There are other lunar swingby geometries that may work on Earth-approach dates when the 
geometry described here won’t, thus potentially reducing the shifting needed of the Earth-approach 
date. This includes, but isn’t limited to, a close approach to Earth followed by lunar swingby 
capture. While tempting to do some propulsive braking at perigee to make use of the Oberth effect, 
the high speed of the perigee passage combined with the high-mass low- thrust condition of the 
Harvestor make the effectiveness of such braking limited. There are multiple lunar swingby 
geometries (sometimes connected by a high-apogee solar-perturbed loop) that can increase 
effectiveness beyond that which can be obtained through a single lunar swingby. Though these 
should be explored they add to the complexity and, more importantly, to the mission duration 
before payload is delivered to the HEEO Processing Facility. 
 
20.3 Selection of the HEEO Processing and Storage Facility Orbit 
There is a strong business incentive to have a single Earth-orbit facility for resource processing 
and storage. That orbit must be adequately accessible both to Harvestor spacecraft escaping toward 
and returning from NEA destinations, as well as to the customer markets that the processed 
propellants serve. The current baseline HEEO Facility orbit has many positive aspects toward that 
end. To summarize, the low perigee, just above the GEO belt (GEO+300km), keeps the HEEO 
Facility out of the worst radiation of the Van Allen belts while keeping close to GEO customers. 
Further analysis in Phase II could show the perigee should be somewhat higher for adequate 
radiation protection. The trade between stability and orbit maintenance cost could also lead to 
selection of a higher baseline perigee since the HEEO, as currently chosen, is subject to some 
fluctuation of the perigee (and apogee) due to natural perturbations (mainly lunar and solar).  
The high apogee of the HEEO makes small the cost of changing perigee to that of LEO, GTO or 
GEO customers through apogee maneuvers, or to lower perigee to an altitude where aerobraking 
may be employed. The period of the HEEO, currently in 1:1 resonance with that of the Moon, 
allows for long-term stability despite the high apogee if the line of apsides is sufficiently displaced 
from the Moon’s location. The choice of resonance ratio of the period with that of the Moon and 
the needed displacement of the line of apsides from the Moon’s direction need to be part of 
examination of its stability and maintenance cost that should be explored further in Phase II. Also 
to be explored further is whether other possible HEEO choices are as readily accessible as this 1:1 
resonance with the Moon choice after the lunar swingby capture. Related to that is the phasing of 
the HEEO line of apsides away from the Moon’s direction. The propulsive cost of that could be 
small or zero by breaking up the post-lunar swingby maneuvers into multiple ones. But if this 
phasing takes several orbit periods then the time cost of this phasing could be prohibitive. 
Having the HEEO Facility orbit in the equatorial plane serves GEO customers well, as well as 
many customer service points in GTO and LEO. It may or may not serve NASA plans well for 
orbital staging of propellant for Mars missions, whether that staging be in LEO or a different 
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HEEO. If this need by NASA is the primary user of this scenario then that would drive the choice 
of HEEO Processing orbit to meet that need. Otherwise, a balance will need to be made in this 
orbit choice in order to best meet the needs of all users in a cost-effective way. Eventually, if and 
when the market bears, the best solution may be multiple HEEO Facilities in different HEEOs 
meeting the needs of disparate users of asteroid-derived propellant. 
 
20.4 Delivery of processed propellants to customer orbits. 
Table 4 shows Delta-Velocities, modeled impulsively in a two-body framework, to transfer from 
the HEEO Facility orbit to various destinations. The first row (a) is part of the scenario for resource 
extraction from an asteroid and would likely use STP at Isp = 200s, since that is baselined for the 
return leg in that scenario. The other rows (b-f) are all scenarios for delivery of processed storable 
propellants from the HEEO Facility to the indicated customer destinations. As such, use of 
processed propellant to effect the ΔVs for those rows in the table could give better performance 
than does STP. 
Table 4. ΔV costs (impulsively modeled) for delivery of HEEO materials to markets in other orbits. 

HEEO Processing Facility To: All-Propulsive 
(km/s) 

With Aerobraking 
(km/s) 

a) Harvestor to 2009 HC Rendezvous 0.894 N/A 
b) Direct Injection to Mars (C3=15 km2/s2) 0.853 N/A 
c) NASA HEO Staging for Mars 0.190 0.152 
d) NASA LEO Staging for Mars 3.319 0.229 
e) GTO (550 km perigee) 0.880 0.193 
f) GEO 1.153 1.634 

 
The aerobraking option assumes perigee is reduced propulsively to 120 km altitude for 
aerodynamic drag effect. Energy is then dissipated perfectly at this altitude until apogee is reduced 
to desired level. Perigee is then raised with propulsive maneuvers at this apogee until desired final 
perigee is reached. Aerobraking is assumed done “gently”, possibly over several perigee passes, 
with no requirement for an aeroshell or other mass increases to improve structural or thermal 
properties. 
 
Destination parameters for Table 4 are further described as: 

a) Harvestor to 2009 HC Rendezvous: This is the outbound rendezvous opportunity with 2009 
HC that corresponds to the return mission depicted in Section 20.1. The mission 
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opportunity map (“porkchop” plot) for this is shown in Fig. 20.5 and the minimum total 
ΔV from that of 0.852 km/s (= 0.646 Earth-departure + 0.206 Rendezvous) is used in the 
table. The Earth-departure ΔV includes a maneuver at HEEO apogee to lower perigee to 
100 km and thereby make better use of the Oberth effect for injection. Since the Harvestor 
is very lightly loaded, compared to the return leg, the impulsive modeling here is likely a 
good approximation. The HEEO orbit is assumed ideally oriented for the injection, so there 
is likely some additional time and maneuvering not modeled to orient and phase the orbit 
as needed.  

b) Direct Injection to Mars: Similar to injection to the NEA describes in (a) with perigee 
reduction to 100 km for injection and likely additional need to re-orient the orbit. Capture 
at Mars is not included in the table entry. 

c) NASA HEO Staging for Mars: The NASA Mars Design Reference Architecture 5.0 shows 
a propellant staging option in a High-Earth Orbit with an eccentric 10-day period, LEO 
perigee (here assumed to be 400 km) and apogee crossing lunar distance. Table values 
assume the HEEO Processing Facility orbit and this HEO Staging orbit are co-planar and 
have apsidal lines aligned. This might be possible, per discussion above, though it seems 
unlikely that these orbits would coincide exactly (driving the corresponding table entries 
to zero) since the HEEO Facility orbit, as currently envisioned, would keep perigee orbit 
much higher than the staging orbit for long-term stability and radiation protection. For 
HEO staging, the aerobraking option is shown in the table to be lower than that for all-
propulsive by 38 m/s. With this fairly small level of improvement the all-propulsive option 
may be preferred to avoid cost, operations, and risk issues. Still, with an all-propulsive cost 
shown of under 200 m/s, this seems a potentially viable alternative to launching propellant 
from Earth’s surface to the staging orbit. 

d) NASA LEO Staging for Mars: The NASA Mars Design Reference Architecture 5.0 shows 
a propellant staging option in LEO (here assumed to be 400 km). The all-propulsive option 
is prohibitive, consisting almost entirely of the large maneuver at LEO altitude to lower 
apogee from HEEO to LEO. However, aerobraking (as modeled) all but eliminates that 
maneuver, though it should be examined in Phase II whether energy reduction of this 
magnitude can be done without significant mass increases to protect against structural and 
thermal stresses to the payload. If it can, then bringing propellant from HEEO to the staging 
orbit in LEO becomes not much more expensive than bringing it to the staging orbit in 
HEO. Providing asteroid-derived propellants to a staging point much deeper in Earth’s 
gravity well (LEO vs. HEO) thereby offers potential for considerable savings in the net 
mass that must be launched from Earth. 
Though not included in Table 4, the cost of changing inclination to that of a LEO customer 
is straight-forward and fairly modest, as long as the LEO destination is nearly circular. For 
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the current HEEO Facility baseline, an inclination change maneuver at apogee costs 4.3 
m/s for a degree of change, and 122 m/s for a 28.5 degree change. That, however, would 
be combined orthogonally with the perigee-lowering maneuver for a smaller net cost. Thus, 
if the LEO Staging orbit at 400 km is equatorial like the HEEO Facility then the cost is as 
shown in Table 4. If the LEO orbit has an inclination of 28.5 degrees, then about 44 m/s is 
added to each of the options shown for LEO delivery. 

e) GTO: The aerobraking option for delivery to this destination looks quite favorable since, 
compared to GEO as the destination, the perigee needs to be raised only a few hundred 
kilometers out of the atmosphere, and not all the way to GEO. For service to satellites 
launched from fairly equatorial sites (such as Kourou or from ocean barges) the extra cost 
of inclination change will be fairly small, or will otherwise be similar to that described 
above when LEO is the destination. Since the GTO is quite eccentric, though, additional 
attention will need to be made to the alignment of the lines of apsides of the GTO 
destination and the HEEO Facility orbits. That may be easily handled by time constraints 
on the launch vehicle to GTO, rather than additional maneuvering by the vehicle making 
the propellant delivery from the HEEO Facility. 

f) GEO: This destination benefits, due to the current baseline selection of the HEEO 
Processing Facility to be in the equatorial plane, from not needing orbit adjustments beyond 
that modeled in Table 4. However the aerobraking option suffers, relative to an all-
propulsive one, due to the high cost of raising perigee from atmospheric to GEO altitude 
using maneuvers at GEO. That cost could be reduced by raising perigee with maneuvers at 
super-synchronous altitude, but then the aerobraking benefit is also reduced. The all-
propulsive cost is also relatively high and will need to be compared carefully to the 
alternative means of getting to GEO. 
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Fig. 13 “Porkchop” Plot Showing Mission Opportunity in terms of ΔV (Total, Earth Escape & Rendezvous) 
for Impulsive Transfer from HEEO Facility Orbit (Oct 2025) to Rendezvous with 2009 HC 

 
A general energy-based argument suggests that the tonnage launched from Earth, for either staging 
in LEO or HEO orbits, should be about the same since the total energy to go from the ground to 
Mars-injection is about the same whether you have an intermediate staging point deep in Earth’s 
gravity well (LEO) or higher in the well (HEO). If that argument holds up then, and removing cost 
estimates from the direct comparison, one can use an estimate instead of tonnage of propellant 
needed at each staging orbit to inject the remaining infrastructure toward Mars. That propellant 
tonnage is then converted to the number of SLS launches needed to take it to the respective staging 
orbits. On the other side of the comparison, the tonnage of Mars injection propellant needed at 
each staging orbit can be expressed as a number of Harvestor payload equivalents.  
Expressed just as tonnage of ground-launched propellant replaced by asteroid resources, it seems 
a case can be made that the asteroid-derived propellant scenario is more strongly beneficial for the 
LEO-staging option over the HEO one. That’s because, for a marginally greater cost of delivery 
of propellant to LEO vs. HEO from the HEEO Processing orbit, there is a much greater need for 
propellant staged in LEO (and thus greater potential for replacement of ground-launched 
propellant vs. asteroid-derived propellants) since the delta-V needed to inject (the rest of the way) 
to Mars is much greater in LEO than in HEO. However, the delivery capability of each SLS will 
be correspondingly much greater to the LEO staging orbit than to the HEO one. From an energetic 
viewpoint (again), it may be that the number of SLS launches needed to place Mars injection 
propellant at either staging orbit is about the same, despite the greater tonnage needed for this in 
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LEO. If so, then the asteroid-derived propellant scenario could be more strongly beneficial for the 
HEO-staging option over the LEO one since fewer Harvestor payload equivalents will be needed 
to serve that staging location. A more detailed examination of the parameters affecting this 
comparison will be made in Phase II of this study. Regardless of which Mars Mission staging orbit 
is selected, though, use of asteroid-derived propellant can lower the cost of the mission if the cost 
per tonne of propellant delivered to the needed utilization location is low enough. 
 
21.  Synergy with New-Generation          Low-Cost Earth-Launch Technologies 
 
From a national perspective, in-space production of storable propellants is the key enabler for 
reusable space-based transfer stages that will complete the transportation-cost revolution begun by 
evolving launch systems from SpaceX, Blue Origin, Stratolaunch, and others.  These aim for 
various levels of reusability for their first stages, but reusability for a re-entering upper stage is 
very challenging.  Space-based transfer stages neatly eliminate this problem.  They also eliminate 
the 30-35% propellant mass carried by comsats for GTO to GEO transfer, since space-based 
refuelable transfer stages can deliver these comsats to GEO.  A more advanced system architecture, 
incorporating a LEO/HEO shuttle tug with aerobraking capability, could deliver our propellants to 
LEO and serve the large LEO to GTO market (and possibly transfer from LEO to GPS-type orbits) 
as well.  The combination of decreasing launch costs and in-space propellant production 
dramatically lowers the cost of high-orbit and beyond-Earth activities. U.S. taxpayers and 
commercial concerns will enjoy reduced costs for satellite-delivered communications, 
entertainment, navigation, and Earth-monitoring services such as weather and climate forecasting.   
 
22. Terrestrial applications of improved H2O2 syntheses 
There are powerful economic incentives to advance the development of the technology for direct 
synthesis of H2O2 because of its environmental benefits and simplicity: hydrogen peroxide, being 
free of chlorine and chlorine oxides, is the safest and “greenest” oxidizing and bleaching agent 
known.  The fuel-cell approach pioneered by Prof. Schiffrin appears to be the most promising route 
for direct synthesis of HTP.  Any assistance we can render to help bring this technology to maturity 
would have wide-spread application on Earth.   
We have arranged for participation of two experimental chemical engineers, Dominic Gervasio 
and James Farrell, both of the Department of Chemical and Environmental Engineering of the 
University of Arizona, to pursue electrochemical production of hydrogen peroxide for Phase II of 
this work. 
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